20 световых лет. Как долго лететь к ближайшей звезде? (8 фото). А это вообще реально? Это же очень далеко

Category: Tags:

Принцип параллакса на простом примере.

Способ определения расстояния до звёзд с помощью измерения угла видимого смещения (параллакса).

Томас Хендерсон, Василий Яковлевич Струве и Фридрих Бессель впервые измерили расстояния до звёзд методом параллаксов.

Схема расположения звёзд в радиусе 14 световых лет от Солнца. Включая Солнце, в этой области находятся 32 известные звёздные системы (Inductiveload / wikipedia.org).

Следующее открытие (30-е годы XIX века) – определение звёздных параллаксов . Учёные давно подозревали, что звёзды могут быть похожими на далёкие солнца. Однако это всё-таки была гипотеза, причём, я бы сказал, до этого времени практически ни на чём не основанная. Было важно научиться напрямую измерять расстояние до звёзд. Как это делать, люди понимали достаточно давно. Земля вращается вокруг Солнца, и, если, например, сегодня сделать точную зарисовку звёздного неба (в XIX веке сделать фотографию было ещё нельзя), подождать полгода и повторно зарисовать небо, можно заметить, что часть звёзд сместилась относительно других, далёких объектов. Причина проста – мы смотрим теперь на звёзды с противоположного края земной орбиты. Возникает смещение близких объектов на фоне далёких. Это точно так же, как если мы вначале посмотрим на палец одним глазом, а потом другим. Мы заметим, что палец смещается на фоне далёких объектов (или далёкие объекты смещаются относительно пальца, в зависимости от того, какую мы выберем систему отсчёта). Тихо Браге , лучший астроном-наблюдатель дотелескопической эпохи, пытался измерить эти параллаксы, но не обнаружил их. По сути, он дал просто нижний предел расстояния до звёзд. Он сказал, что звёзды как минимум дальше, чем, примерно, световой месяц (хотя, такого термина тогда, конечно, ещё не могло быть). А в 30-е годы развитие технологии телескопических наблюдений позволило точнее измерять расстояния до звёзд. И не удивительно, что сразу три человека в разных частях Земного шара провели такие наблюдения для трёх разных звёзд.

Первым формально правильно расстояние до звёзд измерил Томас Хендерсон . Он наблюдал Альфу Центавра в Южном полушарии. Ему повезло, он практически случайно выбрал самую близкую звезду из тех, которые видны невооружённым глазом в Южном полушарии. Но Хендерсон считал, что ему не хватает точности наблюдений, хотя значение он получил правильное. Ошибки, по его мнению, были большими, и он результат свой сразу не опубликовал. Василий Яковлевич Струве наблюдал в Европе и выбрал яркую звезду северного неба – Вегу. Ему тоже повезло – он мог бы выбрать, например, Арктур, который гораздо дальше. Струве определил расстояние до Веги и даже опубликовал результат (который, как потом оказалось, был очень близок к истине). Однако он несколько раз его уточнял, изменял, и поэтому многие посчитали, что нельзя верить этому результату, поскольку сам автор его постоянно меняет. А Фридрих Бессель поступил по-другому. Он выбрал не яркую звезду, а ту, которая быстро двигается по небу – 61 Лебедя (само название говорит, что, наверное, она не очень яркая). Звёзды немножко двигаются относительно друг друга, и, естественно, чем ближе к нам звёзды, тем заметнее этот эффект. Точно так же, как в поезде придорожные столбы очень быстро мелькают за окном, лес лишь медленно смещается, а Солнце фактически стоит на месте. В 1838 году он опубликовал очень надёжный параллакс звезды 61 Лебедя и правильно измерил расстояние. Эти измерения впервые доказали, что звёзды – это далёкие солнца, и стало ясно, что светимость всех этих объектов соответствуют солнечным значением. Определение параллаксов для первых десятков звёзд позволило построить трёхмерную карту солнечных окрестностей. Всё-таки человеку всегда было очень важно строить карты. Это делало мир как бы чуть более контролируемым. Вот карта, и уже чужая местность не кажется такой загадочной, наверное там не живут драконы, а просто какой-то тёмный лес. Появление измерения расстояний до звёзд действительно сделало ближайшую солнечную окрестность в несколько световых лет какой-то более, что ли, дружелюбной.

Это – глава из стенгазеты, выпущенной благотворительным проектом «Коротко и ясно о самом интересном». Нажмите на миниатюру газеты ниже и читайте остальные статьи по интересующей вас тематике. Спасибо!

Материал выпуска любезно предоставил Сергей Борисович Попов – астрофизик, доктор физико-математических наук, профессор Российской академии наук, ведущий научный сотрудник Государственного астрономического института им. Штернберга Московского государственного университета, лауреат нескольких престижных премий в области науки и просвещения. Надеемся, что знакомство с выпуском будет полезно и школьникам, и родителям, и учителям – особенно сейчас, когда астрономия снова вошла в список обязательных школьных предметов (приказ №506 Минобрнауки от 7 июня 2017 года).

Все стенгазеты, изданные нашим благотворительным проектом «Коротко и ясно о самом интересном», ждут вас на сайте к-я.рф. Есть также

И сколько потенциально взрывоопасных звезд расположено на небезопасном расстоянии?

Сверхновая — невероятный по масштабу взрыв звезды — и почти за пределами человеческого воображения. Если бы наше Солнце взорвалось как сверхновая, то получившаяся ударная волна, вероятно, не уничтожила бы всю Землю, но сторона Земли, обращенная к Солнцу, исчезла бы. Ученые считают, что температура планеты в целом увеличилась бы примерно в 15 раз. Более того, Земля не останется на орбите.

Внезапное уменьшение массы Солнца может освободить планету и отправить блуждать в космос. Ясно, что расстояние до Солнца — 8 световых минут — не безопасно. К счастью, наше Солнце не является звездой, которой суждено взорваться как сверхновая. Но другие звезды, вне нашей солнечной системы, могут. Какое ближайшее безопасное расстояние? Научная литература показывает от 50 до 100 световых лет как самое близкое безопасное расстояние между Землей и сверхновой.

Изображение остатка сверхновой 1987А, видимое на оптических длинах волн, снимок Космического телескопа «Хаббл»

Что произойдет, если сверхновая взорвется вблизи Земли? Давайте рассмотрим взрыв звезды, кроме нашего Солнца, но все еще на небезопасном расстоянии. Скажем, сверхновая звезда находится на расстоянии 30 световых лет. Доктор Марк Рид, старший астроном из Гарвард — Смитсоновского центра астрофизики, говорит:

«… если бы была сверхновая, которая находилась примерно в 30 световых годах от нас, это привело бы к сильным воздействиям на Землю, возможно, массовым вымираниям. Рентгеновские лучи и более энергичные гамма-лучи от сверхновой могут разрушить озоновый слой, который защищает нас от солнечных ультрафиолетовых лучей. Он также мог ионизировать азот и кислород в атмосфере, приводя к образованию больших количеств смога подобной закиси азота в атмосфере».

Более того, если бы сверхновая взорвалась в 30 световых годах от нас, особенно пострадали бы фитопланктон и рифовые сообщества. Такое событие сильно истощает базу пищевой цепи океана.

Предположим, что взрыв был немного более далеким. Взрыв близлежащей звезды может оставить Землю, ее поверхность и океанскую жизнь относительно нетронутыми. Но любой относительно близкий взрыв все равно «облил» бы нас гамма-лучами и другими частицами высокой энергии. Это излучение может вызвать мутации в земной жизни. Кроме того, излучение ближайшей сверхновой могло изменить наш климат.

Известно, что сверхновая не вспыхивала на таком близком расстоянии в известной истории человечества. Самая последняя сверхновая, видимая глазу, была сверхновая 1987A, в 1987 году. Она находилась примерно в 168 000 световых годах от нас. До этого последняя вспышка, видимая глазу, была зарегистрирована Иоганном Кеплером в 1604 году. Приблизительно в 20 000 световых годах она светила более ярко, чем любая звезда в ночном небе. Этот взрыв было видно даже при дневном свете! Насколько нам известно, это не вызвало заметных последствий.

Сколько потенциальных сверхновых расположено ближе к нам, чем расстояние от 50 до 100 световых лет? Ответ зависит от вида сверхновой. Сверхновая типа II — стареющая массивная звезда, которая разрушается. Не существует звезд, достаточно массивных, чтобы сделать это в пределах 50 световых лет от Земли.

Но есть и сверхновые I типа — вызванные схлопыванием небольшой бледной звезды белого карлика. Эти звезды тусклы и их трудно обнаружить, поэтому мы не можем быть уверены, сколько их вокруг. Вероятно, несколько сотен из этих звезд находятся в пределах 50 световых лет.

Относительные размеры IK Pegasi A (слева), B (низ, центр) и Солнца (справа).

Звезда IK Pegasi B является ближайшим кандидатом на роль прообраза сверхновой. Это часть бинарной звездной системы, расположенная примерно в 150 световых годах от нашего Солнца и солнечной системы.

Главная звезда в системе — IK Pegasi A — является обычной звездой главной последовательности, мало чем отличающейся от нашего Солнца. Потенциальная сверхновая I типа — другая звезда — IK Pegasi B — массивный белый карлик, который чрезвычайно мал и плотен. Когда звезда А начнет эволюционировать в красного гиганта, ожидается, что она вырастет до радиуса, где столкнется с белым карликом или он начнет тянуть вещество из расширенной газовой оболочки А. Когда звезда В станет достаточно массивной, она может взорваться, как сверхновая.

Что относительно Бетельгейзе? Другой звездой, часто упоминаемой в истории сверхновых звезд, является Бетельгейзе, одна из самых ярких звезд в нашем небе, часть знаменитого созвездия Ориона. Бетельгейзе — звезда сверхгигант. Она по своей сути очень яркая.

Однако такой блеск имеет свою цену. Бетельгейзе — одна из самых известных звезд на небе, потому что она когда-нибудь взорвется. Огромная энергия Бетельгейзе требует, чтобы топливо было израсходовано быстро (условно говоря), и на самом деле Бетельгейзе уже подходит к концу своей жизни. Когда-нибудь скоро (с астрономической точки зрения) у нее закончится топливо, а затем произойдет впечатляющий взрыв сверхновой звезды типа II. Когда это произойдет, Бетельгейзе станет ярче на несколько недель или месяцев, возможно, такой же яркой, как полная Луна и будет видима средь бела дня.

Когда это произойдет? Наверное, не в нашей жизни, но никто не знает это точно. Это может быть завтра или через миллион лет в будущем. Когда это произойдет, все на Земле будут свидетелями впечатляющего события в ночном небе, но земная жизнь не пострадает. Это потому, что Бетельгейзе находится в 430 световых годах от нас.

Как часто вспыхивают сверхновые в нашей галактике? Никто не знает. Ученые предположили, что высокоэнергетическое излучение сверхновых уже вызвало мутации у земных видов, может быть, даже у людей.

Согласно одной из оценок, в окрестностях Земли каждые 15 миллионов лет может быть одно опасное событие сверхновой. Другие ученые говорят, что в среднем взрыв сверхновой происходит в течение 10 парсеков (33 световых года) от Земли каждые 240 миллионов лет. Итак, вы видите, что мы действительно не знаем. Но вы можете сравнить эти цифры с несколькими миллионами лет — то время, когда люди считаются существующими на планете, — и четыре с половиной миллиарда лет для самого возраста Земли.

И, если вы это сделаете, вы увидите, что сверхновая обязательно взорвется около Земли — но, вероятно, не в обозримом будущем человечества.

нравится(3 ) не нравится(0 )

Астрономы обнаружили первую потенциально обитаемую планету за пределами Солнечной системы.

Повод для такого вывода дает работа американских «охотников за экзопланетами» (экзопланеты - это те, что вращаются вокруг других звезд, а не вокруг Солнца).

Ее публикует Astrophysical Journal. С публикацией можно ознакомиться на сайте arXiv.org.

Красный карлик Gliese-581, который, если смотреть с Земли, расположен в созвездии Весов на расстоянии 20,5 световых лет (один световой год = расстоянию, которое преодолевает свет за год со скоростью 300 тыс. км/сек.), давно привлекает к себе внимание «охотников за экзопланетами».

Известно, что среди обнаруженных на настоящий момент экзопланет большинство являются очень массивными и похожи на Юпитер - их легче найти.

В апреле прошлого года в системе Gliese-581 нашли планету, которая стала на тот момент самой легкой из известных солнечных планет вне Солнечной системы, обращающихся вокруг звезд, схожих по параметрам с Солнцем.

Планета Gliese-581e (четвертая в той системе) оказалась всего в 1,9 раза более массивной, чем Земля.

Эта планета обращается вокруг своей звезды всего за 3 (земных) дня и 4 часа.

Теперь ученые сообщают об открытии еще двух планет в этой звездной системе. Наибольший интерес представляет открытая шестой по счету планета - Gliese-581g.

Именно ее астрономы называют первой пригодной для жизни.

Используя свои и архивные данные телескопа Кека, что базируется на Гавайских островах, исследователи замерили параметры этой планеты и пришли к выводу, что там может быть атмосфера и существовать вода в жидком виде.

Так, ученые установили, что эта планета имеет радиус от 1,2 до 1,5 радиуса Земли, массу от 3,1 до 4,3 массы Земли и период обращения вокруг своей звезды в 36,6 земных суток. Большая полуось эллиптической орбиты этой планеты составляет около 0,146 астрономических единиц (1 астрономическая единица - это среднее расстояние между Землей и Солнцем, которое приблизительно равно 146,9 млн км).

Ускорение свободного падения на поверхности этой планеты превышает схожий параметр для Земли в 1,1-1,7 раз.

Что касается температурного режима на поверхности Gliese-581g, то он, по оценкам ученых, колеблется от -31 до -12 градусов Цельсия.

И хотя для простого обывателя этот диапазон нельзя назвать иначе, чем морозным, на Земле жизнь существует в гораздо более широком диапазоне от -70 в Антарктиде до 113 градусов Цельсия в геотермальных источниках, где обитают микроорганизмы.

Так как планета находится достаточно близко к своей звезде, есть большая вероятность того, что Gliese-581g вследствие приливных сил все время повернута к своему светилу одной стороной, подобно тому, как Луна все время «смотрит» на Землю только одним своим полушарием.

Тот факт, что меньше чем за 20 лет астрономы прошли путь от открытия первой планеты у других звезд до потенциально обитаемых планет, свидетельствует, по мнению авторов сенсационной работы, о том, что таких планет существует гораздо больше, чем считалось ранее.

И даже наша галактика Млечный Путь, может быть, изобилует потенциально обитаемыми планетами.

Чтобы обнаружить эту планету, потребовалось более 200 измерений с точностью, например, скорости 1,6 м/сек.

Поскольку в нашей галактике приютились сотни миллиардов звезд, то ученые делают вывод о том, что у десятков миллиардов из них есть потенциально обитаемые планеты.

22 февраля 2017 года NASA сообщило, что у одиночной звезды TRAPPIST-1 найдены 7 экзопланет. Три из них находятся в том диапазоне расстояний от звезды, в котором планета может иметь жидкую воду, а вода - это ключевой условие для жизни. Сообщается также, что данная звездная система находится на расстоянии в 40 световых лет от Земли.

Это сообщение наделало много шума в СМИ, кое-кому даже показалось, что человечество находится в шаге от строительства новых поселений у новой звезды, но это не так. Но 40 световых лет - это много, это МНОГО, это слишком много километров, то есть это чудовищно колоссальное расстояние!

Из курса физики известна третья космическая скорость - это такая скорость, которую должно иметь тело у поверхности Земли, чтобы выйти за пределы Солнечной системы. Значение этой скорости равно 16,65 км/сек. Обычные орбитальные космические корабли стартуют со скоростью 7,9 км/сек, и вращаются вокруг Земли. В принципе, скорость в 16-20 км/сек, является вполне доступной современным земным технологиям, но не более!

Человечество еще не научилось разгонять космические корабли быстрее, чем 20 км/сек.

Рассчитаем, сколько лет понадобиться звездолету, летящему со скоростью в 20 км/сек, чтобы преодолеть 40 световых лет и достичь звезды TRAPPIST-1.
Один световой год - это расстояние, которое проходит луч света в вакууме, а скорость света равна примерно 300 тыс. км/сек.

Космический корабль, сделанный руками людей, летит со скоростью в 20 км/сек, то есть в 15000 раз медленнее скорости света. 40 световых лет такой корабль преодолеет за время равное 40*15000=600000 лет!

Земной корабль (при современном уровне технологии) долетит до звезды TRAPPIST-1 примерно за 600 тыс. лет! Человек разумный существует на Земле (по мнению ученых) всего 35-40 тыс. лет, а тут целых 600 тыс. лет!

В ближайшее время технологии не позволят человеку достичь звезды TRAPPIST-1. Даже перспективные двигатели (ионные, фотонные, космические паруса и т.д.), которых нет в земной реальности, оценочно, могут разогнать корабль до скорости в 10000 км/сек, а значит, время полета до системы TRAPPIST-1 сократится до 120 лет. Это уже более-менее приемлемое время для полета с помощью анабиоза или для нескольких поколений переселенцев, но на сегодняшний день все эти двигатели - фантастика.

Даже ближайшие звезды пока еще слишком далеки от людей, слишком далеки, не говоря уже о звездах нашей Галактики или других галактиках.

Поперечник нашей галактики Млечный Путь составляет примерно 100 тыс. световых лет, то есть путь из конца в конец для современного земного корабля составит 1,5 млрд. лет! Наука предполагает, что нашей Земле 4,5 млрд. лет, а многоклеточной жизни примерно 2 млрд. лет. Расстояние до ближайшей к нам галактики - Туманности Андромеды - 2,5 млн. световых лет от Земли - какие чудовищные расстояния!

Как видно, из всех ныне живущих людей никто и никогда не ступит ногой на землю планеты у другой звезды.

Световой год многим известен из фантастических . Несмотря на то, что его название аналогично временному промежутку году, год измеряет вовсе не время, а расстояние. Эта единица предназначена для измерения огромных .

Световой год – внесистемная единица длины. Это расстояние, которое за один год (365,25 суток или 31 557 600 секунд) проходит свет в вакууме.

Сопоставление светового года с календарным стало применяться после 1984 г. До этого световым годом расстояние, пройденное светом за один тропический год.

Продолжительность тропического года не имеет точного значения, так как его расчеты связаны с угловой скоростью Солнца, а для нее существуют вариации. Для светового года было взято усредненное значение.

Разница в расчетах между тропическим световым годом и световым годом, соотнесенным с юлианским календарем, составляет 0,02 процента. А так как данная единица для высокоточных измерений не используется, практической разницы между ними нет.

Световой год как длины применяется в научно популярной литературе. В астрономии же существует другая внесистемная единица для измерения больших расстояний – парсек. Расчет парсека отталкивается от среднего радиуса земной орбиты. 1 парсек равен 3,2616 светового года.

Расчеты и расстояния

Расчет светового года непосредственно связан со скоростью света. Для расчетов в физике она обычно берется равной 300 000 000 м/с. Точное значение скорости света 299 792 458 м/с. То есть, 299 792 458 метров – это всего лишь одна световая секунда!

Расстояние до Луны приблизительно равно 384 400 000 метров, значит, поверхности луны световой луч достигнет приблизительно за 1,28 секунды.

Расстояние от Солнца до Земли 149 600 000 000. Следовательно, солнечный луч попадает на Землю чуть меньше чем за 7 минут.

Итак, в году 31 557 600 секунд. Умножив это число на расстояние равное одной световой секунде, получим, что один световой год равен 9 460 730 472 580 800 метров.

1 миллион световых лет соответственно будет равен 9 460 730 472 580 800 000 000 метров.

По приблизительным расчетам астрономов, диаметр нашей Галактики около 100 000 световых лет. То есть в пределах нашей Галактики не может быть расстояний, измеряемых миллионами световых лет. Такие числа применимы для измерения расстояний между галактиками.

Ближайшая к Земле галактика Андромеды находится на расстоянии 2,5 миллиона световых лет.

На сегодняшний день самое большое космическое расстояние от Земли, которое возможно измерить, – это расстояние до края наблюдаемой Вселенной. Оно составляет около 45 миллиардов световых лет.

Совет 2: Сколько длится световой год в космическом измерении

Термин «световой год» встречается во многих научных статьях, популярных телепередачах, учебниках и даже в новостях из мира науки. Однако некоторые люди уверены, что световой год – это определенная единица измерения времени, хотя на самом деле в годах можно мерить и расстояние.

Сколько километров в году

Для того чтобы осознать смысл понятия «световой год», сначала необходимо вспомнить школьный курс физики, особенно тот его раздел, который касается скорости света. Итак, скорость света в вакууме, где на него не воздействуют различные факторы, такие как гравитационные и магнитные поля, взвешенные частицы, преломление прозрачной среды и прочее, составляет 299 792,5 километра в секунду. Нужно понимать, что в данном случае под светом подразумеваются , воспринимаемые человеческим зрением.

Менее известными единицами измерения расстояния являются световой месяц, неделя, сутки, час, минута и секунда.
Достаточно долгое света считалась бесконечной величиной, а первым человеком, вычислившим примерную скорость световых лучей в вакууме, стал астроном Олаф Ремер в середине XVII века. Конечно, его данные были весьма приблизительны, но важен сам факт определения конечного значения скорости. В 1970 году скорость света была определена с точностью до одного метра в секунду. Более точных результатов добиться не удалось до сих пор, так как возникли проблемы с погрешностью эталона метра.

Световой год и другие расстояния

Поскольку расстояния в огромны, измерение их в привычных единицах было бы нерациональным и неудобным. Исходя из этих соображений, была введена специальная – световой год, то есть расстояние, которое свет проходит за так называемый юлианский год (равный 365,25 суток). Учитывая, что каждые сутки содержат в себе 86 400 секунд, можно вычислить, что за год луч света преодолевает расстояние нескольким более 9,4 километров. Эта величина кажется огромной, однако, например, расстояние до ближайшей к Земле звезды Проксимы Центавра составляет 4,2 года, а диаметр галактики Млечный Путь превышает 100 000 световых лет, то есть те визуальные наблюдения, которые можно сделать сейчас, отображают картину, существовавшую около сотни тысяч лет назад.

Луч света преодолевает расстояние от Земли до Луны примерно за секунду, а вот солнечный свет добирается до нашей планеты больше восьми минут.

В профессиональной астрофизике понятие светового года используется редко. Ученые преимущественно оперируют такими единицами, как парсек и астрономическая единица. Парсек – это расстояние до воображаемой точки, с которой радиус орбиты Земли виден под углом в одну угловую секунду (1/3600 градуса). Средний радиус орбиты, то есть расстояние от Земли до Солнца, называется астрономической единицей. Парсек равен примерно трем световым годам или 30,8 триллиона километров. Астрономическая единица приблизительно равна 149,6 миллиона километров.

Совет 3: Есть ли единица измерения расстояния большая, чем световой год

Метры, километры, мили и другие единицы измерения с успехом использовались и продолжают использоваться на Земле. Но освоение космоса поставило вопрос о введении новых мер длины, ведь даже в пределах Солнечной системы можно запутаться в нулях, измеряя расстояние в километрах.

Для измерения расстояния в пределах Солнечной системы была создана астрономическая единица – мера расстояния, которая равна среднему расстоянию между Солнцем и Землей. Впрочем, даже для Солнечной системы эта единица представляется не вполне подходящей, что можно показать на наглядном примере. Если представить, что центр небольшого стола соответствует Солнцу, а астрономическую единицу принять за 1 см, то для обозначения облака Оорта – «внешней границы» Солнечной системы – придется отойти от стола на 0,5 км.

Если астрономическая единица оказалась недостаточно большой даже для Солнечной системы, тем более нужны были другие единицы для измерения расстояний между звездами и галактиками.

Световой год

Единица измерения расстояния в масштабах Вселенной должна была основываться на какой-то абсолютной величине. Таковой является скорость света. Наиболее точное ее измерение было произведено в 1975 г. – скорость света равна 299 792 458 м/с или 1 079 252 848,8 км/ч.
За единицу измерения было принято расстояние, которое свет, двигаясь с такой скоростью, проходит в течение земного не високосного года – 365 земных суток. Данная единица была названа световым годом.

В настоящее в световых годах чаще указывается в научно-популярных книгах и фантастических романах, чем в научных трудах. Астрономы чаще пользуются более крупной единицей – парсеком.

Парсек и его производные

Название «парсек» как «параллакс угловой секунды». Угловая секунда – это единица измерения угла: окружность делится на 360 градусов, градус – на 60 минут, минута – на 60 секунд. Параллаксом называется изменение наблюдаемого положения объекта в зависимости от расположения наблюдателя. По годичному параллаксу звезд вычисляется расстояние до них. Если представить себе прямоугольный треугольник, один из катетов в котором – полуось земной орбиты, а гипотенуза – расстояние между Солнцем и другой звездой, то размер угла в нем – годичный параллакс данной звезды.

При определенном расстоянии годичный параллакс будет равен 1 угловой секунде, вот это расстояние и было принято за единицу измерения под названием парсек. Международное обозначение этой единицы – pс, российское – пк.

Парсек равен 30,8568 трлн км или 3,2616 светового года. Впрочем, для космических масштабов и этого оказалось недостаточно. Астрономы пользуются производными единицами: равен 1000 пк, – 1 млн пк, а – 1 млрд пк.