Теория м вебера кратко. Социологическая концепция макса вебера. Социологическая концепция Макса Вебера

Федеральное агентство по образованию

Государственное образовательное учреждение

Уфимский государственный авиационный технический университет

Кроме основных компонент сеть может включать в состав блоки бесперебойного питания, резервные приборы, современные динамически распределяемые объекты и различные типы серверов (такие как файл-серверы, принт-серверы или архивные серверы).

Создавая ЛВС, разработчик стоит перед проблемой: при известных данных о назначении, перечне функций ЛВС и основных требованиях к комплексу технических и программных средств ЛВС построить сеть, то есть решить следующие задачи:

Определить архитектуру ЛВС: выбрать типы компонент ЛВС;

Произвести оценку показателей эффективности ЛВС;

Определить стоимость ЛВС.

При этом должны учитываться правила соединения компонентов ЛВС, основанные на стандартизации сетей, и их ограничения, специфицированные изготовителями компонент ЛВС.

Конфигурация ЛВС для АСУ существенным образом зависит от особенностей конкретной прикладной области. Эти особенности сводятся к типам передаваемой информации (данные, речь, графика), пространственному расположению абонентских систем, интенсивностям потоков информации, допустимым задержкам информации при передаче между источниками и получателями, объемам обработки данных в источниках и потребителях, характеристикам абонентских станций, внешним климатическим, электромагнитным факторам, эргономическим требованиям, требованиям к надежности, стоимости ЛВС и т. д.

Исходные данные для проектирования ЛВС могут быть получены в ходе предпроектного анализа прикладной области, для которой должна быть создана АСУ. Эти данные уточняются затем в результате принятия решений на этапах проектирования ЛВС и построения все более точных моделей АСУ, что позволяет в «Техническом задании на ЛВС» сформулировать требования к ней. Лучшая ЛВС - это та, которая удовлетворяет всем требованиям пользователей, сформулированным в техническом задании на разработку ЛВС, при минимальном объеме капитальных и эксплуатационных затрат.

ЦЕЛЬ РАБОТЫ

Получение навыков выбора топологии, элементов локальной вычислительной сети, а так же расчета времени задержки сигнала.


КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Проектирование конфигурации ЛВС относится к этапу проектирования технического обеспечения автоматизированных систем и осуществляется на этом этапе после распределения функции автоматизированной системы по абонентским станциям ЛВС, выбора типов абонентских станций, определения физического расположения абонентских станций.

Задание на проектирование включает требования к ЛВС, указания о доступных компонентах аппаратных и программных средств, знания о методах синтеза и анализа ЛВС, предпочтения и критерии сравнения вариантов конфигурации ЛВС. Рассмотрим варианты топологии и состав компонент локальной вычислительной сети.

1. Топология ЛВС.

Топология сети определяется способом соединения ее узлов каналами связи. На практике используются 4 базовые топологии:

Звездообразная (рис. 1);

Кольцевая (рис. 2);

Шинная (рис. 3);

Древовидная (рис. 1*);

Ячеистая (рис. 4).

Топологии вычислительных сетей могут быть самыми различными, но для локальных вычислительных сетей типичными являются всего три: кольцевая, шинная, звездообразная. Иногда для упрощения используют термины - кольцо, шина и звезда.

Древовидная топология (иерархическая, вертикальная). В этой топологии узлы выполняют другие более интеллектуальные функции, чем в топологии «звезда». Сетевая иерархическая топология в настоящее время является одной из самых распространенных. ПО для управления сетью является относительно простым, и эта топология обеспечивает точку концентрации для управления и диагностирования ошибок. В большинстве случаев сетью управляет станция A на самом верхнем уровне иерархии, и распространение трафика между станциями также инициируется станцией А. Многие фирмы реализуют распределенный подход к иерархической сети, при котором в системе подчиненных станций каждая станция обеспечивает непосредственное управление станциями, находящимися ниже в иерархии. Из станции A производится управление станциями B и C. Это уменьшает нагрузку на ЛВС через выделение сегментов.

Ячеистая топология (смешанная или многосвязная). Сеть с ячеистой топологией представляет собой, как правило, неполносвязанную сеть узлов коммутации сообщений (каналов, пакетов), к которым подсоединяются оконечные системы. Все КС являются выделенными двухточечными. Такого рода топология наиболее часто используются в крупномасштабных и региональных вычислительных сетях, но иногда они применяются и в ЛВС. Привлекательность ячеистой топология заключается в относительной устойчивости к перегрузкам и отказам. Благодаря множественности путей из станции в станцию трафик может быть направлен в обход отказавших или занятых узлов.

Топология сети влияет на надежность, гибкость, пропускную способность, стоимость сети и время ответа (см. Приложение 1 ).

Выбранная топология сети должна соответствовать географическому расположению сети ЛВС, требованиям, установленным для характеристик сети, перечисленным в таблице. Топология влияет на длину линий связи.

Рис.1. Топология звезда Рис.2 Топология кольцо

https://pandia.ru/text/78/549/images/image004_82.gif" width="279" height="292 src=">

Рис. 1* Топология распределенная звезда

Рис.3 Топология

линейная шина

прозрачное" соединение нескольких локальных сетей либо нескольких сегментов одной и той же сети, имеющих различные протоколы. Внутренние мосты соединяют большинство ЛВС с помощью сетевых плат в файловом сервере. При внешнем мосте используется рабочая станция в роли сервисного компьютера с двумя сетевыми адаптерами от двух различных, однако однородных вычислительных сетей.

В том случае, когда соединяемые сети отличаются по всем уровням управления, используется оконечная система типа шлюз, в которой согласование осуществляется на уровне прикладных процессов. С помощью межсетевого шлюза соединяются между собой системы, использующие различные операционные среды и протоколы высоких уровней

9. Исходные данные к заданию

Пользователи: студенты, преподаватели, инженеры, программисты, лаборанты, техники кафедры автоматизированных систем управления УГАТУ.

Функции:

1) реализация учебного процесса на лабораторных, практических занятиях, выполнение курсового и дипломного проектирования;

2) организация учебного процесса, подготовка к проведению занятий, разработка методического обеспечения;

3) разработка программного обеспечения для работы в сети;

4) профилактика и ремонт оборудования.

Расчет стоимость оборудования ЛВС:

ЛВС должна допускать подключение большого набора стандартных и специальных устройств, в том числе: ЭВМ, терминалов, устройств внешней памяти, принтеров, графопостроителей, факсимильных устройств, контрольного и управляющего оборудования, аппаратуры подключения к другим ЛВС и сетям (в том числе и к телефонным) и т. д.

ЛВС должна доставлять данные адресату с высокой степенью надежности (коэффициент готовности сети должен быть не менее 0.96), должна соответствовать существующим стандартам, обеспечивать "прозрачный" режим передачи данных, допускать простое подключение новых устройств и отключение старых без нарушения работы сети длительностью не более 1 с; достоверность передачи данных должна быть не больше +1Е-8.

11. Перечень задач по проектированию ЛВС

11.1. Выбрать топологию ЛВС (и обосновать выбор).

11.2. Нарисовать функциональную схему ЛВС и составить перечень аппаратных средств.

11.3. Выбрать оптимальную конфигурацию ЛВС.

11.4. Произвести ориентировочную трассировку кабельной сети и выполнить расчет длины кабельного соединения для выбранной топологии с учетом переходов между этажами. Поскольку существуют ограничения на максимальную длину одного сегмента локальной сети для определенного типа кабеля и заданного количества рабочих станции, требуется установить необходимость использования повторителей.

11.5. Определить задержку распространения пакетов в спроектированной ЛВС.

Для расчетов надо выделить в сети путь с максимальным двойным временем прохождения и максимальным числом репитеров (концентраторов) между компьютерами, то есть путь максимальной длины. Если таких путей несколько, то расчет должен производиться для каждого из них.

Расчет в данном случае ведется на основании таблицы 2.

Для вычисления полного двойного (кругового) времени прохождения для сегмента сети необходимо умножить длину сегмента на величину задержки на метр, взятую из второго столбца таблицы. Если сегмент имеет максимальную длину, то можно сразу взять величину максимальной задержки для данного сегмента из третьего столбца таблицы.

Затем задержки сегментов, входящих в путь максимальной длины, надо просуммировать и прибавить к этой сумме величину задержки для приемопередающих узлов двух абонентов (это три верхние строчки таблицы) и величины задержек для всех репитеров (концентраторов), входящих в данный путь (это три нижние строки таблицы).

Суммарная задержка должна быть меньше, чем 512 битовых интервалов. При этом надо помнить, что стандарт IEEE 802.3u рекомендует оставлять запас в пределах 1 – 4 битовых интервалов для учета кабелей внутри соединительных шкафов и погрешностей измерения. Лучше сравнивать суммарную задержку с величиной 508 битовых интервалов, а не 512 битовых интервалов.

Таблица 2.

Двойные задержки компонентов сети Fast Ethernet (величины задержек даны в битовых интервалах)

Тип сегмента

Задержка на метр

Макс. задержка

Два абонента TX/FX

Два абонента TX/FX

Два абонента T4

Два абонента T4

Один абонент T4 и один TX/FX

Один абонент T4 и один TX/FX

Экранированная витая пара

Оптоволоконный кабель

Репитер (концентратор) класса I

TX/FX

Репитер (концентратор) класса II с портами TX/FX

Репитер (концентратор) класса II с портами T4

Репитер (концентратор) класса II с портами T4

Все задержки, приведенные в таблице, даны для наихудшего случая. Если известны временные характеристики конкретных кабелей, концентраторов и адаптеров, то практически всегда предпочтительнее использовать именно их. В ряде случаев это может дать заметную прибавку к допустимому размеру сети.

Пример расчета для сети, показанной на рис. 5:

Здесь существуют два максимальных пути: между компьютерами (сегменты А, В и С) и между верхним (по рисунку) компьютером и коммутатором (сегменты А, В и D). Оба эти пути включают в себя два 100-метровых сегмента и один 5-метровый. Предположим, что все сегменты представляют собой 100BASE-TX и выполнены на кабеле категории 5. Для двух 100-метровых сегментов (максимальной длины) из таблицы следует взять величину задержки 111,2 битовых интервалов.

Рис 5. Пример максимальной конфигурации сети Fast Ethernet

Для 5-метрового сегмента при расчете задержки, умножается 1,112 (задержка на метр) на длину кабеля (5 метров): 1,112 * 5 = 5,56 битовых интервалов.

Величина задержки для двух абонентов ТХ из таблицы – 100 битовых интервалов.

Из таблицы величины задержек для двух репитеров класса II – по 92 битовых интервала.

Суммируются все перечисленные задержки:

111,2 + 111,2 + 5,56 + 100 + 92 + 92 = 511,96

это меньше 512, следовательно, данная сеть будет работоспособна, хотя и на пределе, что не рекомендуется.

11.6. Определить надежность ЛВС

Для модели с двумя состояниями (работает и не работает) вероятность работоспособности компонента или, проще надежность, можно понимать по-разному. Наиболее распространенными являются формулировки:

1. доступность компонента

2. надежность компонента

Доступность используется в контексте ремонтоспособных систем. Из сказанного следует, что компонент может находиться в одном из трех состояний: работает, не работает, в процессе восстановления. Доступность компонента определяется как вероятность его работы в случайный момент времени. Оценка величины доступности производится с учетом среднего времени восстановления в рабочее состояние и среднего времени в не рабочем состоянии. Надежность можно записать:

______________среднее время до отказа______________

среднее время до отказа + среднее время восстановления

Количественные значения показателей надежности АИС должны быть не хуже следующих:

Среднее время наработки на отказ комплекса программно-технических средств (КПТС) АИС должно составлять не менее 500 часов;

Среднее время наработки на отказ единичного канала связи АИС должно составлять не менее 300 часов;

Среднее время наработки на отказ серверов АИС должно составлять не менее 10000 часов;

Среднее время наработки на отказ ПЭВМ (в составе АРМ) должно составлять не менее 5000 часов;

Среднее время наработки на отказ единичной функции прикладного программного обеспечения (ППО) КПТС АИС должно составлять не менее 1500 часов;

Среднее время восстановления работоспособности КПТС АИС должно составлять не более 30 минут; при этом:

Среднее время восстановления работоспособности КПТС после отказов технических средств должно составлять - не более 20 минут, без учета времени организационных простоев;

Среднее время восстановления работоспособности КПТС после отказа общего или специального программного обеспечения АИС - не более 20 минут без учета времени организационных простоев;

Среднее время восстановления работоспособности единичного канала связи КПТС должно составлять не более 3 часов;

Среднее время восстановления работоспособности КПТС в случае отказа или сбоя из-за алгоритмических ошибок прикладного программного обеспечения программно-технологического комплекса (ПТК) АИС, без устранения которых невозможно дальнейшее функционирование КПТС или ПТК АИС - до 8 часов (с учетом времени на устранение ошибок).

12.1. Перечень этапов проектирования конфигурации ЛВС с указанием принятых проектных решений.

12.2. Функциональная схема ЛВС (чертеж ЛВС с указанием марок оборудования и линий связи). В схеме рекомендуется отметить число рабочих станций в разных сегментах ЛВС, возможные резервы расширения и «узкие» места.

12.3. Результаты расчетов стоимости ЛВС (свести в таблицу с указанием наименования, количества единиц, цены и стоимости). При расчете стоимости учесть затраты на проектирование и монтаж ЛВС.

Наименование

Количество

Стоимость

Примечание

12.4 Произвести расчет задержки ЛВС и ее надежности.

Приложение 1.

Таблица 1

Сравнительные данные по характеристикам ЛВС

Характеристика

Качественная оценка характеристик

Шинной и древовидной сети

Кольцевой сети

Звездообразной сети

Время ответа

tотв.

В маркерной шине
tотв. предсказуемо и зависит от числа узлов сети. В случайной шине
t отв. зависит от нагрузки

tотв. Есть функция от числа узлов сети

toтв. зависит от нагрузки и временных характеристик центрального узла

Пропускная способность С

В маркерной шине зависит от количества узлов. В случайной шине С увеличивается при спорадических малых нагрузках и падает при обмене длинными сообщениями в стационарном режиме

С падает при добавлении новых узлов

С зависит от производительности центрального узла и пропускной способности абонентских каналов

Надежность

Отказы АС не влияют на работоспособность остальной части сети. Разрыв кабеля выводит из строя шинную ЛВС.

Отказ одной АС не приводит к отказу всей сети. Однако использование обходных схем позволяет защитить сеть от отказов АС

Отказы АС не влияют на работоспособность остальной части сети. Надежность ЛВС определяется надежностью центрального узла

В набор параметров линий связи ЛВС входят: полоса пропускания и скорость передачи данных, способность к двухточечной, многоточечной и/или широковещательной передаче (то есть допустимые применения), максимальная протяженность и число подключаемых абонентских систем, топологическая гибкость и трудоемкость прокладки, устойчивость к помехам и стоимость.

Главная проблема заключается в одновременном обеспечении показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

Условия физического расположения помогают определить наилучшим образом тип кабеля и его топологию. Каждый тип кабеля имеет собственные ограничения по максимальной длине: витая пара обеспечивает работу на коротких отрезках, одноканальный коаксиальный кабель - на больших расстояниях, многоканальный коаксиальный а волоконно-оптический кабель - на очень больших расстояниях.

Скорость передачи данных тоже ограничена возможностями кабеля: самая большая у волоконно-оптического, затем идут одноканальный коаксиальный, многоканальный кабели и витая пара. Под требуемые характеристики можно подобрать имеющиеся в наличии кабели.

Fast Ethernet 802.3u не является самостоятельным стандартом, а представляет собой дополнение к существующему стандарту 802.3 в виде глав. Новая технология Fast Ethernet сохранила весь MAC уровень классического Ethernet , но пропускная способность была повышена до 100 Мбит/с. Следовательно, поскольку пропускная способность увеличилась в 10 раз, то битовый интервал уменьшился в 10 раз, и стал теперь равен 0,01 мкс. Поэтому в технологии Fast Ethernet время передачи кадра минимальной длины в битовых интервалах осталось тем же, но равным 5,75 мкс. Ограничение на общую длину сети Fast Ethernet уменьшилось до 200 метров. Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же.

Официальный стандарт 802.3u установил три различных спецификации для физического уровня Fast Ethernet :

- 100Base-TX - для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1 ;

- 100Base -T4 - для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;

100Base-FX - для многомодового оптоволоконного кабеля, используются два волокна.

В Ethernet вводится 2 класса концентраторов: 1-го класса и 2-го класса. Концентраторы 1-го класса поддерживают все типы кодирования физического уровня (TX, FX, T4 ), т. е. порты могут быть разные. Концентраторы 2-го класса поддерживают только один тип кодирования физического уровня: либо TX/FX , либо T4 .

Предельные расстояния от хаба до узла:

- TX – 100 м, FX – многомодовые: 412 м (полудуплекс), 2км (полный). Одномодовые: 412 м (полудуплекс), до 100 км (полный), T4 – 100 м.

Концентратор 1-го класса в сети может быть только один, концентраторов 2-го класса – два, но м/д ними 5 м.

Витая пара (UTP)

Наиболее дешевым кабельным соединением является двухжильное соединение витым проводом, часто называемое витой парой (twisted pair ). Она позволяет передавать информацию со скоростью до 10-100 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и простая установка. Для повышения помехозащищенности информации часто используют экранированную витую пару. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

1. Традиционный телефонный кабель, по нему можно передавать речь, но не данные.

2. Способен передавать данные со скоростью до 4 Мбит/с. 4 витые пары.

3. Кабель, способный передавать данные со скоростью до 10 Мбит/с. 4 витых пар с девятью витками на метр.

4. Кабель, способный передавать данные со скоростью до 16 Мбит/с. 4 витых пар.

5. Кабель, способный передавать данные со скоростью до 100 Мбит/с. Состоит из четырех витых пар медного провода.

6. Кабель, способный передавать данные со скоростью до 1 Гб/с, состоит из 4 витых пар.

Коаксиальный кабель имеет среднюю цену, помехозащищен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передаче информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый повторитель (repeater ). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией шина или дерево коаксиальный кабель должен иметь на конце согласующий резистор (terminator).

Ethernet -кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick ) или желтый кабель (yellow cable ). Он использует 15-контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Максимально доступное расстояние без повторителя не превышает 500 м, а общее расстояние сети Ethernet - около 3000 м. Ethernet -кабель, благодаря своей магистральной топологии, использует в конце лишь один нагрузочный резистор.

Более дешевым, чем Ethernet -кабель, является соединение Cheapernet -кабель или, как его часто называют, тонкий (thin ) Ethernet . Это также 50-омный коаксиальный кабель со скоростью передачи информации в 10 миллионов бит/с.

При соединении сегментов Cheapernet -кабеля также требуются повторители. Вычислительные сети с Cheapernet -кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Соединение сетевых плат производится с помощью широко используемых малогабаритных байонетных разъемов (СР-50 ). Дополнительного экранирования не требуется. Кабель присоединяется к ПК с помощью тройниковых соединителей (Tconnectors ). Расстояние между двумя рабочими станциями без повторителей можетсоставлять максимум 300 м, а общее расстояние для сети на Cheapemet -кабеле - около 1000 м. Приемопередатчик Cheapernet расположен на сетевой плате и используется как для гальванической развязки между адаптерами, так и для усиления внешнего сигнала.

Наиболее дорогими являются оптопроводники, называемые также стекловолоконным кабелем. Скорость распространения информации по ним достигает нескольких гигабит в секунду. Внешнее воздействие помех практически отсутствует. Применяются там, где возникают электромагнитные поля помех или требуется передача информации на очень большие расстояния без использования повторителей. Они обладают противоподслушивающими свойствами, так как техника ответвлений в оптоволоконных кабелях очень сложна. Оптопроводники объединяются в ЛВС с помощью звездообразного соединения.

2 вида оптоволокна :

1)одномодовый кабель – используется центральный проводник малого диаметра, соизмеримого с длиной волны света (5-10мкм). При этом все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. В качестве используют лазер. Длина кабеля – 100км и более.

2)многомодовый кабель – используют более широкие внутренние сердечники (40-100мкм). Во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения наз. модой луча. В качестве источника излучения применяются светодиоды. Длина кабеля – до 2км.

СПИСОК ЛИТЕРАТУРЫ

Олифер сети. Принципы, технологии, протоколы. - Спб.: Питер, 20с.

Гук, М. Аппаратные средства локальных сетей. Энциклопедия.- СПб. : Изд-во Питер, 2004 .- 576 с.

Новиков, сети: архитектура, алгоритмы, проектирование.- М. : ЭКОМ, 2002 .- 312с. : ил. ; 23см. - ISBN -8.

Епанешников, вычислительные сети / , .- Москва: Диалог-МИФИ, 2005 .- 224 с.

1. http://*****/, система для автоматического создания проектов локальных вычислительных сетей
Составители: Николай Михайлович Дубинин

Руслан Николаевич Агапов

Геннадий Владимирович Старцев

ПРОЕКТИРОВАНИЕ ЛОКАЛЬНОЙ ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

Лабораторный практикум по дисциплине

«Сети ЭВМ и телекоммуникации»

Подписано в печать хх.05.2008. Формат 60х84 1/16.

Бумага офсетная. Печать плоская. Гарнитура Times New Roman.

Усл. печ. л. . Усл. кр. – отт. . Уч. – изд. л. .

Тираж 100 экз. Заказ №

ГОУ ВПО Уфимский государственный авиационный

технический университет

Центр оперативной полиграфии УГАТУ

Уфа-центр, ул. К. Маркса, 12

Число пользователей сети Интернет постоянно растет. Современные технологии позволяют решать разнообразные задачи приема и передачи данных различных типов - от текстов до видео, музыки и изображений.
В связи с этим существует необходимость правильной организации локальных вычислительных сетей. Проектирование локальных сетей требует тщательного планирования на всех этапах.
могут связываться как проводным, так беспроводным способом.

Этапы проектирования и построения ЛВС

Можно выделить несколько этапов:

  • первичное исследование
  • разработка, составление техзадания
  • подготовка оборудования
  • монтаж ЛВС
  • гарантийное и постгарантийное обслуживание

Необходимые свойства локальных сетей

Масштабируемость ЛВС

Масшатабируемость является необходимым свойством, которое необходимо предусмотреть при проектировании ЛВС. На начальном этапе организации должна отвечать необходимым целям и задачам. Но нужно учитывать возможность расширения ЛВС, чтобы в дальнейшем можно было подключать дополнительное оборудование.

Гибкость

Наличие гибкости необходимо для быстрого реагирования ЛВС на меняющиеся требования. ЛВС должна нормально адаптироваться для различных типов сетевых кабелей. В понятие гибкости также входит поддержка различных технологий от Ethernet, Fast Ethernet и до Gigabit Ethernet.

Отказоустойчивость

Отказоустойчивость - очень важное свойство, которое важно предусмотреть при проектировании. Вопрос отказоустойчивости решается с помощью резервных линий, которые будут задействованы в случае выходы из строя основных сетей. Существует вариант подключения сервера к концентраторам, снабженным запасными путями. При сбое одного концентратора всегда можно быстро перейти на другой в автоматическом режиме, не прерывая сеанса связи.

Надежность ЛВС

Необходимо искать оптимальные варианты долговременного использования локальной вычислительной сети. Вынужденные простои обходятся дорого, поэтому необходимо использовать специальные приборы и инструменты, повышающие надежность ЛВС.

Защищенность ЛВС

Гарантией надежной и эффективной работы фирмы и сохранности данных является защищенность локальных вычислительных сетей. Грамотно спроектированные локальные вычислительные сети должны обеспечивать защиту от несанкционированного доступа через телефонную линию или интернет.
Простой пароль не обеспечивает надежной защиты, поэтому для обеспечения более эффективной защиты уровень концентратора, коммутатора, маршрутизатора и сервера удаленного доступа. Использование подобных методов для защиты ЛВС обеспечивает возможность полного контроля над текущими процессами и гарантирует сохранность важнейших данных организации.

Управляемость ЛВС

Возможности мощных средств мониторинга локальной вычислительной сети используются для оперативной диагностики и устранения помех и неисправностей, чтобы исключить возможные простои, упомянутые выше. Есть много продуктов, применяемых для сбора параметров о состоянии ЛВС и ее параметрах, например, средства RMON. Web-интерфейс обеспечивает возможность управления семью практически в любом месте с помощью удаленного доступа.
, обеспечение их управляемости и других свойств должно осуществляться только специалистами, у которых есть квалификации и опыт работы в области проектирования и монтажа ЛВС.

Компания ГРИН ЭФФЕКТ осуществляет проектирование, строительство (прокладку) и обслуживание ЛВС.

Прокладка ЛВС обеспечивает гарантированное представление информационных ресурсов и услуг с требуемыми уровнями доступности, надежности, масштабируемости, безопасности и управляемости. ЛВС (локальная вычислительная сеть) это совокупность программно-аппаратных средств, включающей в себя множество компонентов и узлов. Сетевая подсистема ЛВС Заказчика призвана удовлетворять потребности абонентов в обеспечении информационного взаимодействия и обмена данными, направленного на выполнение бизнес процессов Заказчика.
Чаще всего ЛВС организована на технологиях Ethernet и/или Wi-Fi. Для строительства и прокладки ЛВС используются коммутаторы, маршрутизаторы, точки беспроводного доступа (wi-fi), модемы, оптические (ВОЛС) и медные лини связи и т.д.
Для удалённого подключения к ЛВС чаще всего используется VPN-подключение. VPN - технология позволяющая из дома, удалённого офиса или командировки организовать одно или несколько сетевых соединений поверх другой сети (internet).

Выбор и обоснование технологии строительства ЛВС

Выбор технологии, архитектуры и оборудования для строительства ЛВС определяется следующими факторами:
  • количеством пользователей (рабочих мест);
  • количеством серверного оборудования;
  • географическим расположением зданий и этажностью зданий;
  • требованиями ЛВС к пропускной способности каналов связи и производительности оборудования;
  • возможностью наращивания количества узлов ЛВС без нарушения ее функционирования и снижения производительности;
  • исключением потерь информации при перегрузке сетевых сегментов и оборудования;
  • минимизацией номенклатуры используемого оборудования для снижения расходов на администрирование;
  • поддержкой качества предоставления услуг и управления уровнем обслуживания;
  • соответствием требованиям международных стандартов;
  • минимальной начальной стоимостью ЛВС и стоимостью ее последующего наращивания.

    Для достижения наилучших результатов по производительности, надежности, управляемости, масштабируемости ЛВС необходим модульный и иерархический подход к дизайну системы передачи данных. Такой подход позволяет наращивать ЛВС оптимальным путем добавления новых блоков не затрагивая остальные компоненты сетевой структуры, обеспечивает крайне высокий степень определённости в поведении ЛВС, что облегчает поиск и устранение неисправностей.

    ЛВС предоставляет своим абонентам следующие информационные услуги:

  • услуги передачи данных;
  • услуги беспроводного подключения абонентов;
  • услуги аудио- и видеоконференцсвязи.

    ЛВС состоит из следующих подсистем:

  • сетевая подсистема;
  • подсистема сетевой безопасности;
  • подсистема контроля доступа и авторизации;
  • подсистема мониторинга и управления;
  • подсистема аудио-видеоконференцсвязи;
  • подсистема беспроводной сети.

    Мы работаем со всем спектром оптико-волоконной продукции (ВОЛС), медными парами, серверными шкафами, патч панелями, оборудованием беспроводных сетей (wi-fi), розетками и пр. Наша компания обладает современным оборудованием и ПО для строительства (прокладки) ЛВС. При сдаче ЛВС прилагается полный отчет о тестировании всех проложенных линий связи. Строительство лвс осуществляется с использованием сетевого активного и пассивного оборудования ведущих производителей, таких как Cisco, Hewlett-Packard, 3COM и др. Компания ГРИН ЭФФЕКТ осуществляет строительство и прокладку ЛВС для офисных, производственных, общественных и жилых зданий.

    Проектирование ЛВС

    Проектный отдел компании ГРИН ЭФФЕКТ оказывает полный спектр услуг по проектированию ЛВС (локальной вычислительной сети) .
    На первом этапе проектирования ЛВС производятся осмотр объекта, переговоры с заказчиком, выявление задач и требований предъявляемых к ЛВС.
    По результатам исследований и анализа исходных данных разрабатывается оптимальный проект построения локальной вычислительной сети, в который включены все пожелания и требования заказчика. В проекте ЛВС представлены: подробные планы расположения элементов системы; принципиальные и структурные схемы подключений, трассы прокладки кабелей, кабельный журнал. Так же составляется спецификация оборудования и материалов, смета на мотаж ЛВС и ведомости выполняемых работ.


    Проектирование ЛВС осуществляется в соответствии с Постановлением Правительства РФ от 16.02.2008 г. №87 "О составе разделов проектной документации и требованиями к их содержанию", региональными строительными нормами и требованиями технического задания.
    При проектировании ЛВС учитываются требования существующего законодательства и нормативных документов по экологии, охране труда и пожарной безопасности.

    Предпроектное обследование

    Цель предпроектного обследования состоит в определении комплекса мероприятий и разработке технических предложений с учетом сформированных типовых решений. По результатам обследования наши инженеры-проектировщики помогут Заказчику разработать грамотное техническое задание (ТЗ) на проектирование ЛВС.

    Техническое задание (ТЗ) ЛВС

    Требования заказчика составляют основу технического задания (ТЗ) ЛВС и являются тем первичным документом, с которого начинается работа по созданию локальной вычислительной сети. Кроме технических требований, на первых этапах работы по проектированию ЛВС в качестве исходной информации используются данные, полученные в процессе предпроектного обследования. Любое проектирование начинается с правильно написанного технического задания утвержденного заказчиком. От грамотно написанного ТЗ зависят сроки проектирования и выбор необходимого оборудования для строительства ЛВС, описанные в ТЗ.

    Состав проектной документации ЛВС регламентируется Постановлением Правительства Российской Федерации «О составе разделов проектной документации и требованиях к их содержанию» от 16.02.2008 г. № 87.

    Проектная документация ЛВС (стадия «П»)

    Грамотно разработанная концепция ЛВС и техническое задание дает основания для создания эскизного плана ЛВС – единого комплекса решений, предназначенного для обеспечения заданного режима эксплуатации ЛВС. Эскизный проект определяет оптимальную структуру ЛВС и трассу прокладки кабельных проводок, расположение и состав элементов телекоммуникационной инфраструктуры, представление о бюджете проекта, а также целый ряд других параметров, которые позволят облегчить выбор конкретных решений.
    Проектная документация ЛВС представляет собой текстовые и графические материалы, определяющие объемно-планировочные, конструктивные и технические решения для строительства или реконструкции (модернизации) ЛВС.
    Основой для разработки проекта ЛВС служат архитектурно-строительная, технологическая и инженерные части Проекта здания. Проект ЛВС ориентирован на использование максимально эффективных и хорошо зарекомендовавших себя оборудования и комплектующих материалов. Грамотное проектирование - это высокая скорость выполнения строительных работ и обслуживания ЛВС. Безошибочный расчет проекта – минимизация затрат на оборудование.

    Рабочая документация ЛВС (стадия «Р»)

    На следующем этапе разрабатывается рабочая документация ЛВС, которая используется на этапе строительства. Именно на этой стадии определяется ресурсоемкость процесса, объем строительных и монтажных работ, количества необходимого оборудования и материалов, а значит и итоговый бюджет проекта ЛВС.
    Рабочая документация ЛВС разрабатывается после утверждения предшествующей стадии проектирования. Цель работ на стадии "Р" состоит в подготовке точных чертежей, схем и таблиц, которыми будут руководствоваться монтажники при проведении работ по созданию ЛВС. Рабочая документация обеспечивает детальную привязку компонентов всех систем к объекту. Рабочая документация ЛВС содержит чертежи, таблицы соединений и подключений, планы расположения оборудования и проводок и другие документы.

    Сметная документация ЛВС («СД»)

    Разработка сметной документации является заключительным этапом проектирования локальной вычислительной сети и определяет полную стоимость оборудования, строительно-монтажных и пуско-наладочных работ.

    Строительство (монтаж) ЛВС

    В соответствии с утверждённым Заказчиком проектом ЛВС и закупки необходимого оборудование производится :
  • организация коммутационного центра
  • установка электрических щитов
  • монтаж кабельных каналов
  • размещение точек доступа
  • установка розеток
  • прокладка кабелей

    Специалисты компании ГРИН ЭФФЕКТ оказывают полный спектр услуг по монтажу ЛВС.
    Накопленный, в данной области, опыт позволяет произвести монтаж и подключение ЛВС в кратчайшие сроки, в строгом соответствии с проектом и надлежащим качеством работ.

    Настройка ЛВС

    По завершению монтажа, ЛВС подвергается комплексному тестированию и настройки с целью проверки работоспособности системы и выявления дефектов. Результаты тестирования и настройки с пояснениями значений параметров и анализом качества локальной вычислительной сети предоставляются заказчику (пример отчёта тестирования на рисунке). После завершения всех работ и передачи документации заказчику, представителями исполнителя и заказчика производится осмотр объекта. В случае выполнения всех необходимых требований и задач, а так же соответствия техническому заданию объект сдаётся в эксплуатацию.

    Обслуживание ЛВС

    Техническое обслуживание ЛВС (локальной вычислительной сети) проводится с целью обеспечения бесперебойной работы единой системы ИТ оборудования компании и постоянного доступа персонала к различным информационным сервисам.
    Обслуживание ЛВС реализуется путём диагностики состояния всех участков ЛВС, проведения измерений в кросс шкафах, обнаружения и устранения повреждений элементов ЛВС.

    Техническое обслуживание ЛВС включает в себя:

  • профилактические работы
  • восстановительные работы.

    Объёмы работ технического обслуживания ЛВС зависят от условий эксплуатации и состава оборудования.

    Профилактические работы технического обслуживания ЛВС:

  • проверка кроссового оборудования на предмет комплектности, наличия маркировок, внешних повреждений и условий эксплуатации
  • восстановление повреждённой маркировки кроссового оборудования
  • укладка кросс-шнуров в кабельные органайзеры
  • диагностика портов ЛВС
  • восстановление работоспособности повреждённых портов ЛВС
  • предоставление Заказчику отчётов проведения технического обслуживания ЛВС и рекомендаций по реконструкции ЛВС

    Диагностика портов ЛВС заключается в проведении измерений параметров портов ЛВС на соответствие параметров категорийности с использованием соответствующих сертифицированных контрольно-измерительных приборов с выдачей отчетов по всем измеряемым параметрам во всем диапазоне частот. Несоответствие портов ЛВС требованиям категорийности определяется по результатам диагностики портов.

    Восстановительные работы технического обслуживания ЛВС:

  • замена повреждённых кабелей
  • восстановление поврежденного кроссового оборудования

    Выявленные в результате профилактических работ неисправности устраняются Исполнителем в рамках обслуживания ЛВС. В зависимости от характера неисправности, принимается решение о выводе неисправного оборудования из использования и включения его в план текущего ремонта ЛВС, либо устранении дефекта на месте. Неисправности, на устранение которых требуются дополнительные работы и материальные ресурсы, устраняться после составления дефектной ведомости. Выявленные нарушения условий эксплуатации ЛВС сообщаются представителям Заказчика.

    График проведения работ ТО ЛВС разрабатывается и утверждается Заказчиком. По результатам проведения работ исполнитель предоставляет отчет, в который входят:

  • таблица размещения портов ЛВС на объекте
  • таблица кроссировок кроссового оборудования ЛВС
  • акт измерений параметров портов ЛВС
  • дефектную ведомость.
  • Рынок предоставления интернет-услуг в настоящее время развивается стремительно и активно. Интернет прочно вошел в жизнь почти каждого человека, и является неотъемлемой частью нашей повседневной жизни. Услуги, предлагаемые всемирной паутиной, используются повсеместно: дома, на работе, по пути на работу по средству телефона, во время отдыха и т.д. Открываются кафе, в которых можно не только отдохнуть от повседневной жизни, но и воспользоваться услугами интернета или пакетными программами персонального компьютера, поиграть в сетевые игры. Такие услуги предоставляет интернет-кафе.

    Информационные потоки в ЛВС предприятия

    Информация будет передаваться между всеми компьютерами, установленными в интернет-кафе. Так же любой компьютер будет иметь доступ к принтерам. Но только пользователи классов №1 и №2 смогут выходить в сеть Интернет.

    Планирование структуры сети

    Компьютерная сеть - это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

    Все многообразие компьютерных сетей можно классифицировать по группе признаков:

    • 1. Территориальная распространенность;
    • 2. Ведомственная принадлежность;
    • 3. Скорость передачи информации;
    • 4. Тип среды передачи.

    По территориальной распространенности сети могут быть локальными, глобальными, и региональными. Локальные - это сети, перекрывающие территорию не более 10 м 2 , региональные - расположенные на территории города или области, глобальные на территории государства или группы государств, например, всемирная сеть Internet.

    По принадлежности различают ведомственные и государственные сети. Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети - сети, используемые в государственных структурах.

    По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

    По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.

    Компьютеры могут соединяться кабелями, образуя различную топологию сети. Под топологией вычислительной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают три основных топологий:

    При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рисунок 2). В качестве центрального узла может выступать сервер или специальное устройство - концентратор (Hub).

    Рисунок 2 - Топология типа звезда.

    Преимущества данной топологии состоят в следующем:

    • 1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла;
    • 2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

    Однако помимо достоинств у данной топологии есть и недостатки:

    • 1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный компьютер выйдет из строя, то работа всей сети прекратится;
    • 2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

    При топологии типа кольцо все компьютеры подключаются к линии, замкнутой в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (Рисунок 3).

    Рисунок 3 - Топология типа кольцо.

    Передача информации в такой сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, которому требуется передать данные. Получив маркер, компьютер создает так называемый "пакет", в который помещает адрес получателя и данные, а затем отправляет этот пакет по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя.

    После этого принимающий компьютер посылает источнику информации подтверждение факта получения данных. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

    Преимущества топологии типа кольцо состоят в следующем:

    • 1. Пересылка сообщений является очень эффективной, т.к. Можно отправлять несколько сообщений друг за другом по кольцу. Т.е. Компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.
    • 2. Протяженность сети может быть значительной. Т.е. Компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

    К недостаткам данной топологии относятся:

    • 1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы;
    • 2. Для подключения нового клиента необходимо отключить работу сети;
    • 3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены;
    • 4. Общая производительность сети определяется производительностью самого медленного компьютера.

    При топологии типа общая шина все клиенты подключены к общему каналу передачи данных (Рисунок 4). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети. Передача информации в данной сети происходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот компьютер, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу данных.

    Рисунок 4 - Топология типа общая шина.

    Преимущества топологии общая шина:

    • 1. Вся информация находится в сети и доступна каждому компьютеру;
    • 2. Рабочие станции можно подключать независимо друг от друга, т.е. При подключении нового абонента нет необходимости останавливать передачу информации в сети;
    • 3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента;
    • 4. Сеть обладает высокой надежностью, т.к. Работоспособность сети не зависит от работоспособности отдельных компьютеров.

    К недостаткам топологии типа общая шина относятся:

    • 1. Низкая скорость передачи данных, т.к. Вся информация циркулирует по одному каналу (шине);
    • 2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем медленнее идет передача информации от одного компьютера к другому;
    • 3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

    Самым распространенным типом сети с топологией общая шина является сеть стандарта Ethernet со скоростью передачи информации 10 - 100 Мбит/сек.

    Были рассмотрены основные топологии ЛВС. Однако на практике при создании ЛВС организации могут одновременно использоваться сочетание нескольких топологий. Например, компьютеры в одном отделе могут быть соединены по схеме звезда, а в другом отделе по схеме общая шина, и между этими отделами проложена линия для связи.

    В данном проекте для организации ЛВС интернет-кафе будет использоваться топология "звезда".

    Лабораторная работа №2.

    Цель работы: овладение навыками работы в Microsoft Office Visio, планирование и проектирование компьютерной сети.

    Процесс построения (проектирования) сети представляет собой упрощенное моделирование не наступившей действительности и включает в себя следующие основные этапы:

    1. Анализ задач, для решения которых создается сеть, а также определение объема финансирования проекта.

    2. Проектирование физической структуры – этап, на котором анализируются начальные условия и создается детальный проект физической организации сети.

    3. Проектирование инфраструктуры – этап, на котором определяются протоколы взаимодействия, используемые службы, политика безопасности и т.п. — т.е. логическая организация сети.

    4. Развертывание – этап, связанный с прокладкой линий связи, установкой и настройкой оборудования.

    Этап анализа является одним из важнейших, поскольку определяет все остальные решаемые задачи: как физическую структуру сети, так и логическую. Именно на данном этапе выступает основное различие компьютерных сетей.

    На этапе проектирования решаются следующие задачи:

    1. На основе определенных целевых требований к сети определяется необходимый состав оборудования и, прежде всего, компьютеров: количество, характеристики и т.д.

    2. Определяется физическое расположение рабочих мест и определяются этажи и аудитории, которые будут охватываться сетью. При решении этой задачи должна учитываться принципиальная возможность прокладки линий связи к рабочим местам/помещениям.

    3. Исходя из решаемых задач, стоимости и расположения, определяется тип физических линий связи, соединяющих рабочие места, состав и расположение коммуникационного оборудования (например, концентраторов).

    4. Определяется способ подключения к Интернету: выбирается провайдер – организация, обеспечивающая подключение организации к сети Интернет. При выборе провайдера учитываются факторы: характеристики возможных физических соединений с провайдером, требования к оборудованию и необходимое дополнительное оборудование, начальная стоимость подключения, стоимость эксплуатации подключения, технологические ограничения подключения (невозможность использования некоторых служб).

    5. Исходя из технических требований, определяется узел проектируемой сети, который будет являться шлюзом для подключения к Интернету и определяется место его расположения. При этом учитывается удобство физического соединения шлюза с проектируемой сетью и удобство подведения физических линий для подключения к Интернету.

    Общий алгоритм, описывающий процесс построения сети:

    1. Определение исходных данных.

    – определение целей использования сети;

    – определение требований к сети;

    – характеристики используемого оборудования (компьютеры, сетевое оборудование, принтеры, модемы и др.);

    – характеристика сетевого ПО (операционные системы, серверное ПО, антивирусное ПО);

    примерная схема здания в котором планируется строить сеть.

    2. Проектирование сети.

    – способ сегментирования и объединения сегментов (определение необходимых сегментов оборудования для их формирования);

    – выбор типа кабеля (как правило выбирается неэкранированная витая пара);

    – определение активных устройств (модемы, маршрутизаторы и т.п.);

    – выбор программного обеспечения (серверные и клиентские ОС, серверное программное обеспечение и т.п.);

    – разработка схемы сети (указываются узлы сети и длины соединительных кабелей).

    3. Определение стоимости.

    – анализ основных направлений затрат;

    – составление примерной сметы затрат.

    4. Примерный план проведения работ.

    5. Развертывание сети.

    При создании новой сети желательно учитывать следующие факторы:

    – требуемый размер сети (в настоящее время, в ближайшем будущем и по прогнозу на перспективу);

    – структура, иерархия и основные части сети (по подразделениям предприятия, а также по комнатам, этажам и зданиям предприятия); основные направления и интенсивность информационных потоков в сети (в настоящее время, в ближайшем будущем и в дальней перспективе); характер передаваемой по сети информации;

    технические характеристики оборудования (компьютеров, адаптеров, кабелей, репитеров, концентраторов, коммутаторов);

    – возможности прокладки кабельной системы в помещениях и между ними, а также меры обеспечения целостности кабеля;

    – обслуживание сети и контроль ее безотказности и безопасности;

    – требования к программным средствам по допустимому размеру сети, скорости, гибкости, разграничению прав доступа, стоимости, по возможностям контроля обмена информацией и т.д. (например, если предполагается использование одного ресурса многими пользователями, то следует использовать серверную ОС);

    – необходимость подключения к другим сетям (например, глобальным);

    – имеющиеся компьютеры и их программное обеспечение, а также периферийные устройства (принтеры, сканеры и т.д.).

    При выборе размера (под размером сети в данном случае понимается как количество объединяемых в сеть компьютеров, так и расстояния между ними) и структуры сети необходимо учитывать:

    – количество компьютеров (следует оставлять возможность для дальнейшего роста количества компьютеров в сети);

    – требуемую длину линий связи сети (например, если расстояния очень большие, может понадобиться использование дорогого оборудования).

    – способы объединения частей сети (для объединения частей сети могут использоваться репитеры, репитерные концентраторы, коммутаторы, мосты и маршрутизаторы, причем в ряде случаев стоимость этого объединительного оборудования может даже превысить стоимость компьютеров, сетевых адаптеров и кабеля;

    Возможность масштабирования (например, лучше приобретать коммутаторы или маршрутизаторы с количеством портов, несколько большим, чем требуется в настоящий момент).

    Пример. Пусть небольшое предприятие занимает три этажа, на каждом по пять комнат, и включает в себя три подразделения, по три группы. В этом случае можно построить сеть таким образом (рис. 1):

    Рабочие группы занимают по 1–3 комнаты, их компьютеры объединены между собой репитерными концентраторами. Концентратор может использоваться один на комнату, один на группу или один на весь этаж. Концентратор целесообразно расположить в помещении, в которое имеет доступ минимальное количество сотрудников.

    Подразделения занимают отдельный этаж. Все три сети рабочих групп каждого подразделения объединяются коммутатором, а для связи с сетями других подразделений используется маршрутизатор. Коммутатор вместе с одним из концентраторов лучше поместить в отдельной комнате.

    Общая сеть предприятия включает три сегмента сетей подразделений, объединенных маршрутизатором. Этот же маршрутизатор может использоваться для подключения к глобальной сети.

    Серверы рабочих групп располагаются в комнатах рабочих групп, серверы подразделений – на этажах подразделений.

    Рис. 1. Структура сети предприятия (С – серверы рабочих групп, РК – репитерные концентраторы, Ком – коммутаторы)

    При выборе сетевого оборудования надо учитывать множество факторов, в частности:

    – уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

    – скорость передачи информации и возможность ее дальнейшего увеличения;

    – возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

    – метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

    – разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

    – стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

    В настоящее время для организации локальных сетей в подавляющем большинстве случаев используется неэкранированная витая пара UTP. Более дорогие варианты на основе экранированной витой пары, оптоволоконного кабеля или беспроводных соединений применяются на предприятиях, где в этом существует действительно острая необходимость. Например, оптоволокно может использоваться для связи между удаленными сегментами сети без потери скорости.

    При выборе сетевого программного обеспечения (ПО) надо, в первую очередь, учитывать следующие факторы:

    – какую сеть поддерживает сетевое ПО: одноранговую, сеть на основе сервера или оба этих типа;

    максимальное количество пользователей (лучше брать с запасом не менее 20%);

    – количество серверов и возможные их типы;

    – совместимость с разными операционными системами и компьютерами, а также с другими сетевыми средствами;

    – уровень производительности программных средств в различных режимах работы;

    – степень надежности работы, разрешенные режимы доступа и степень защиты данных;

    – какие сетевые службы поддерживаются;

    – стоимость программного обеспечения, его эксплуатации и модернизации.

    Еще до установки сети необходимо решить вопрос об управлении сетью. Даже в случае одноранговой сети лучше выделить для этого отдельного специалиста (администратора), который будет иметь всю информацию о конфигурации сети и распределении ресурсов и следить за корректным использованием сети всеми пользователями. Если сеть большая, то одним сетевым администратором уже не обойтись, нужна группа, возглавляемая системным администратором.

    После установки и запуска сети решать эти вопросы, как правило, слишком поздно.

    При проектировании следует определить возможные направления финансовых затрат (к данному этапу проектирования необходимые предпосылки для решения этой задачи уже имеются):

    – дополнительные компьютеры и обновление существующих компьютеров. Необязательное направление затрат: при достаточном количестве и качестве существующих компьютеров их обновление не требуется (или требуется в минимальном объеме – например, для установки более современных сетевых карт); в одноранговой сети не нужен (хотя и желателен) также специальный файл-сервер.

    – сетевые аппаратные средства (кабели и все, что необходимо для организации кабельной системы, сетевые принтеры, активные сетевые устройства – повторители, концентраторы, маршрутизаторы и т.д.).

    – сетевые программные средства, прежде всего, сетевая ОС на необходимое число рабочих станций (с запасом).

    – оплата работы приглашенных специалистов при организации кабельной системы, установке и настройке сетевой ОС, при проведении периодической профилактики и срочного ремонта. Необязательное направление затрат: для небольших сетей со многими из этих работ может и должен справляться штатный сетевой администратор (возможно, с помощью других сотрудников данного предприятия).

    Спроектировать компьютерную сеть (собрать исходные данные; выбрать: размер и структуру сети, оборудование, сетевые программные средства; спроектировать кабельную систему; рассчитать примерную стоимость оборудования) в соответствии с № варианта.

    Контрольные вопросы:

    1.Какие этапы включает процесс построения сети?

    2. Классификация локальных вычислительных сетей?

    3. Базовые технологии локальных сетей?

    4. Топология локальной вычислительной сети?

    5.Маршрутизатор, коммутатор?

    6.Плюсы и минусы Microsoft Office Visio?

    Статьи к прочтению:

    Этапы проектирования локальных сетей