Преобразование логарифмических выражений. Свойства логарифмов и примеры их решений. Исчерпывающий гид (2020). Логарифмы. Начальный уровень


Перечисленные равенства при преобразовании выражений с логарифмами используются как справа налево, так и слева направо.

Стоит заметить, что запоминать следствия из свойств необязательно: при проведении преобразований можно обойтись основными свойствами логарифмов и другими фактами (например, тем, что при b≥0), из которых соответствующие следствия вытекают. «Побочный эффект» такого подхода проявляется лишь в том, что решение будет немного длиннее. К примеру, чтобы обойтись без следствия, которое выражается формулой , а отталкиваться лишь от основных свойств логарифмов, придется провести цепочку преобразований следующего вида: .

То же самое можно сказать и про последнее свойство из приведенного выше списка, которому отвечает формула , так как оно тоже следует из основных свойств логарифмов. Главное понимать, что всегда имеется возможность у степени положительного числа с логарифмом в показателе поменять местами основание степени и число под знаком логарифма. Справедливости ради, заметим, что примеры, подразумевающие осуществление преобразований подобного рода, на практике встречаются редко. Несколько примеров мы приведем ниже по тексту.

Преобразование числовых выражений с логарифмами

Свойства логарифмов вспомнили, теперь пора учиться применять их на практике для преобразования выражений. Естественно начать с преобразования числовых выражений, а не выражений с переменными, так как на них удобнее и проще познавать азы. Так мы и сделаем, причем начнем с очень простых примеров, чтобы научиться выбирать нужное свойство логарифма, но постепенно будем усложнять примеры, вплоть до момента, когда для получения конечного результата нужно будет применять несколько свойств подряд.

Выбор нужного свойства логарифмов

Свойств логарифмов не так мало, и понятно, что нужно уметь выбрать из них подходящее, которое в данном конкретном случае приведет к требуемому результату. Обычно это сделать нетрудно, сопоставив вид преобразуемого логарифма или выражения с видами левых и правых частей формул, выражающих свойства логарифмов. Если левая или правая часть одной из формул совпадает с заданным логарифмом или выражением, то, скорее всего, именно это свойство и надо применять при преобразовании. Следующие примеры это наглядно демонстрируют.

Начнем с примеров преобразования выражений с использованием определения логарифма, которому отвечает формула a log a b =b , a>0 , a≠1 , b>0 .

Пример.

Вычислите, если это возможно: а) 5 log 5 4 , б) 10 lg(1+2·π) , в) , г) 2 log 2 (−7) , д) .

Решение.

В примере под буквой а) явно видна структура a log a b , где a=5 , b=4 . Эти числа удовлетворяют условиям a>0 , a≠1 , b>0 , поэтому можно безбоязненно воспользоваться равенством a log a b =b . Имеем 5 log 5 4=4 .

б) Здесь a=10 , b=1+2·π , условия a>0 , a≠1 , b>0 выполнены. При этом имеет место равенство 10 lg(1+2·π) =1+2·π .

в) И в этом примере мы имеем дело со степенью вида a log a b , где и b=ln15 . Так .

Несмотря на принадлежность к тому же виду a log a b (здесь a=2 , b=−7 ), выражение под буквой г) нельзя преобразовать по формуле a log a b =b . Причина в том, что оно не имеет смысла, так как содержит отрицательное число под знаком логарифма. Более того, число b=−7 не удовлетворяет условию b>0 , что не дает возможности прибегнуть к формуле a log a b =b , так как она требует выполнения условий a>0 , a≠1 , b>0 . Итак, нельзя говорить о вычислении значения 2 log 2 (−7) . В этом случае запись 2 log 2 (−7) =−7 будет ошибкой.

Аналогично и в примере под буквой д) нельзя привести решение вида , так как исходное выражение не имеет смысла.

Ответ:

а) 5 log 5 4 =4 , б) 10 lg(1+2·π) =1+2·π , в) , г), д) выражения не имеют смысла.

Часто бывает полезно преобразование, при котором положительное число представляется в виде степени какого-то положительного и отличного от единицы числа с логарифмом в показателе. В его основе лежит то же определение логарифма a log a b =b , a>0 , a≠1 , b>0 , но формула применяется справа налево, то есть, в виде b=a log a b . Например, 3=e ln3 или 5=5 log 5 5 .

Переходим к применению свойств логарифмов для преобразования выражений.

Пример.

Найдите значение выражения: а) log −2 1 , б) log 1 1 , в) log 0 1 , г) log 7 1 , д) ln1 , е) lg1 , ж) log 3,75 1 , з) log 5·π 7 1 .

Решение.

В примерах под буквами a), б) и в) даны выражения log −2 1 , log 1 1 , log 0 1 , которые не имеет смысла, так как в основании логарифма не должно находиться отрицательное число, нуль или единица, ведь мы определили логарифм лишь для положительного и отличного от единицы основания. Поэтому, в примерах а) - в) не может быть и речи о нахождении значения выражения.

Во всех остальных заданиях, очевидно, в основаниях логарифмов находятся положительные и отличные от единицы числа 7 , e , 10 , 3,75 и 5·π 7 соответственно, а под знаками логарифмов всюду стоят единицы. А нам известно свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 . Таким образом, значения выражений б) – е) равны нулю.

Ответ:

а), б), в) выражения не имеют смысла, г) log 7 1=0 , д) ln1=0 , е) lg1=0 , ж) log 3,75 1=0 , з) log 5·e 7 1=0 .

Пример.

Вычислить: а) , б) lne , в) lg10 , г) log 5·π 3 −2 (5·π 3 −2) , д) log −3 (−3) , е) log 1 1 .

Решение.

Понятно, что нам предстоит воспользоваться свойством логарифма основания, которому отвечает формула log a a=1 при a>0 , a≠1 . Действительно, в заданиях под всеми буквами число под знаком логарифма совпадает с его основанием. Таким образом, хочется сразу сказать, что значение каждого из заданных выражений есть 1 . Однако не стоит торопиться с выводами: в заданиях под буквами а) – г) значения выражений действительно равны единице, а в заданиях д) и е) исходные выражения не имеют смысла, поэтому нельзя сказать, что значения этих выражений равны 1 .

Ответ:

а) , б) lne=1 , в) lg10=1 , г) log 5·π 3 −2 (5·π 3 −2)=1 , д), е) выражения не имеют смысла.

Пример.

Найти значение: а) log 3 3 11 , б) , в) , г) log −10 (−10) 6 .

Решение.

Очевидно, под знаками логарифмов стоят некоторые степени основания. Исходя из этого, понимаем, что здесь нам пригодится свойство степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число. Учитывая это, имеем следующие результаты: а) log 3 3 11 =11 , б) , в) . А можно ли записать аналогичное равенство для примера под буквой г) вида log −10 (−10) 6 =6 ? Нет, нельзя, так как выражение log −10 (−10) 6 не имеет смысла.

Ответ:

а) log 3 3 11 =11 , б) , в) , г) выражение не имеет смысла.

Пример.

Представьте выражение в виде суммы или разности логарифмов по тому же основанию: а) , б) , в) lg((−5)·(−12)) .

Решение.

а) Под знаком логарифма находится произведение, а нам известно свойство логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 . В нашем случае число в основании логарифма и числа в произведении являются положительными, то есть, удовлетворяют условиям выбранного свойства, поэтому, мы его можем спокойно применять: .

б) Здесь воспользуемся свойством логарифма частного , где a>0 , a≠1 , x>0 , y>0 . В нашем случае основание логарифма есть положительное число e , числитель и знаменатель π положительны, значит, удовлетворяют условиям свойства, поэтому мы имеем право на применение выбранной формулы: .

в) Во-первых, заметим, что выражение lg((−5)·(−12)) имеет смысл. Но при этом для него мы не имеем права применять формулу логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 , так как числа −5 и −12 – отрицательные и не удовлетворяют условиям x>0 , y>0 . То есть, нельзя провести такое преобразование: lg((−5)·(−12))=lg(−5)+lg(−12) . А что же делать? В подобных случаях исходное выражение нуждается в предварительном преобразовании, позволяющем уйти от отрицательных чисел. Про подобные случаи преобразования выражений с отрицательными числами под знаком логарифма мы подробно поговорим в одном из , а пока приведем решение этого примера, которое понятно наперед и без объяснений: lg((−5)·(−12))=lg(5·12)=lg5+lg12 .

Ответ:

а) , б) , в) lg((−5)·(−12))=lg5+lg12 .

Пример.

Упростить выражение: а) log 3 0,25+log 3 16+log 3 0,5 , б) .

Решение.

Здесь нам помогут все те же свойства логарифма произведения и логарифма частного, которые мы использовали в предыдущих примерах, только сейчас мы будем их применять справа налево. То есть, сумму логарифмов преобразуем в логарифм произведения, а разность логарифмов – в логарифм частного. Имеем
а) log 3 0,25+log 3 16+log 3 0,5=log 3 (0,25·16·0,5)=log 3 2 .
б) .

Ответ:

а) log 3 0,25+log 3 16+log 3 0,5=log 3 2 , б) .

Пример.

Избавьтесь от степени под знаком логарифма: а) log 0,7 5 11 , б) , в) log 3 (−5) 6 .

Решение.

Несложно заметить, что мы имеем дело с выражениями вида log a b p . Соответствующее свойство логарифма имеет вид log a b p =p·log a b , где a>0 , a≠1 , b>0 , p - любое действительное число. То есть, при выполнении условий a>0 , a≠1 , b>0 от логарифма степени log a b p мы можем переходить к произведению p·log a b . Проведем это преобразование с заданными выражениями.

а) В этом случае a=0,7 , b=5 и p=11 . Так log 0,7 5 11 =11·log 0,7 5 .

б) Здесь , условия a>0 , a≠1 , b>0 выполняются. Поэтому

в) Выражение log 3 (−5) 6 имеет ту же структуру log a b p , a=3 , b=−5 , p=6 . Но для b не выполняется условие b>0 , что делает невозможным применение формулы log a b p =p·log a b . Так что же, нельзя справиться с поставленной задачей? Можно, но требуется предварительное преобразование выражения, о котором мы подробно поговорим ниже в пункте под заголовком . Решение будет таким: log 3 (−5) 6 =log 3 5 6 =6·log 3 5 .

Ответ:

а) log 0,7 5 11 =11·log 0,7 5 ,
б)
в) log 3 (−5) 6 =6·log 3 5 .

Довольно часто формулу логарифма степени при проведении преобразований приходится применять справа налево в виде p·log a b=log a b p (при этом требуется выполнение тех же условий для a , b и p ). Например, 3·ln5=ln5 3 и lg2·log 2 3=log 2 3 lg2 .

Пример.

а) Вычислите значение log 2 5 , если из известно, что lg2≈0,3010 и lg5≈0,6990 . б) Представьте дробь в виде логарифма по основанию 3 .

Решение.

а) Формула перехода к новому основанию логарифма позволяет данный логарифм представить в виде отношения десятичных логарифмов, значения которых нам известны: . Остается лишь провести вычисления, имеем .

б) Здесь достаточно воспользоваться формулой перехода к новому основанию, причем применить ее справа налево, то есть, в виде . Получаем .

Ответ:

а) log 2 5≈2,3223 , б) .

На этом этапе мы достаточно скрупулезно рассмотрели преобразование самых простых выражений с использованием основных свойств логарифмов и определения логарифма. В этих примерах нам приходилось применять какое-то одно свойство и ничего более. Теперь со спокойной совестью можно переходить к примерам, преобразование которых требует использования нескольких свойств логарифмов и других дополнительных преобразований. Ими мы и займемся в следующем пункте. Но перед этим еще вкратце остановимся на примерах применения следствий из основных свойств логарифмов.

Пример.

а) Избавьтесь от корня под знаком логарифма . б) Преобразуйте дробь в логарифм по основанию 5 . в) Освободитесь от степеней под знаком логарифма и в его основании . г) Вычислите значение выражения . д) Замените выражение степенью с основанием 3 .

Решение.

а) Если вспомнить про следствие из свойства логарифма степени , то можно сразу давать ответ: .

б) Здесь воспользуемся формулой справа налево, имеем .

в) В данном случае к результату приводит формула . Получаем .

г) А здесь достаточно применить следствие, которому отвечает формула . Так .

д) Свойство логарифма позволяет нам достичь нужного результата: .

Ответ:

а) . б) . в) . г) . д) .

Последовательное применение нескольких свойств

Реальные задания на преобразование выражений с использованием свойств логарифмов обычно сложнее тех, которыми мы занимались в предыдущем пункте. В них, как правило, результат получается не в один шаг, а решение уже состоит в последовательном применении одного свойства за другим вместе с дополнительными тождественными преобразованиями , такими как раскрытие скобок, приведение подобных слагаемых, сокращении дробей и т.п. Так давайте подбираться ближе к таким примерам. Сложного в этом ничего нет, главное действовать аккуратно и последовательно, соблюдая порядок выполнения действий .

Пример.

Вычислить значение выражения (log 3 15−log 3 5)·7 log 7 5 .

Решение.

Разность логарифмов в скобках по свойству логарифма частного можно заменить логарифмом log 3 (15:5) , и дальше вычислить его значение log 3 (15:5)=log 3 3=1 . А значение выражения 7 log 7 5 по определению логарифма равно 5 . Подставим эти результаты в исходное выражение, получаем (log 3 15−log 3 5)·7 log 7 5 =1·5=5 .

Приведем вариант решения без пояснений:
(log 3 15−log 3 5)·7 log 7 5 =log 3 (15:5)·5=
=log 3 3·5=1·5=5 .

Ответ:

(log 3 15−log 3 5)·7 log 7 5 =5 .

Пример.

Чему равно значение числового выражения log 3 log 2 2 3 −1 ?

Решение.

Преобразуем сначала логарифм, находящийся под знаком логарифма, по формуле логарифма степени: log 2 2 3 =3 . Таким образом, log 3 log 2 2 3 =log 3 3 и дальше log 3 3=1 . Так log 3 log 2 2 3 −1=1−1=0 .

Ответ:

log 3 log 2 2 3 −1=0 .

Пример.

Упростить выражение .

Решение.

Формула перехода к новому основанию логарифма позволяет отношение логарифмов по одному основанию представить как log 3 5 . При этом исходное выражение примет вид . По определению логарифма 3 log 3 5 =5 , то есть , а значение полученного выражения в силу того же определения логарифма равно двум.

Вот краткий вариант решения, который обычно и приводится: .

Ответ:

.

Для плавного перехода к информации следующего пункта давайте взглянем на выражения 5 2+log 5 3 , и lg0,01 . Их структура не подходит ни под одно из свойств логарифмов. Так что же получается, их нельзя преобразовать с использованием свойств логарифмов? Можно, если провести предварительные преобразования, подготавливающие данные выражения к применению свойств логарифмов. Так 5 2+log 5 3 =5 2 ·5 log 5 3 =25·3=75 , и lg0,01=lg10 −2 =−2 . Дальше мы подробно разберемся, как осуществляется подобная подготовка выражений.

Подготовка выражений к применению свойств логарифмов

Логарифмы в составе преобразуемого выражения очень часто по структуре записи отличаются от левых и правых частей формул, отвечающих свойствам логарифмов. Но не менее часто преобразование этих выражений подразумевает использование свойств логарифмов: для их использования лишь требуется предварительная подготовка. А заключается эта подготовка в проведении определенных тождественных преобразований, приводящих логарифмы к виду, удобному для применения свойств.

Справедливости ради, заметим, что в качестве предварительных преобразований могут выступать практически любые преобразования выражений, от банального приведения подобных слагаемых до применения тригонометрических формул. Это и понятно, так как преобразуемые выражения могут содержать какие угодно математические объекты: скобки, модули, дроби, корни, степени и т.д. Таким образом, нужно быть готовым выполнить любое требующееся преобразование, чтобы дальше получить возможность воспользоваться свойствами логарифмов.

Сразу скажем, что в этом пункте мы не ставим перед собой задачу классифицировать и разобрать все мыслимые предварительные преобразования, позволяющие в дальнейшем применить свойства логарифмов или определение логарифма. Здесь мы остановимся лишь на четырех из них, которые наиболее характерны и наиболее часто встречаются на практике.

А теперь подробно о каждом из них, после чего в рамках нашей темы останется лишь разобраться с преобразованием выражений с переменными под знаками логарифмов.

Выделение степеней под знаком логарифма и в его основании

Начнем сразу с примера. Пусть перед нами логарифм . Очевидно, в таком виде его структура не располагает к применению свойств логарифмов. А можно ли как-нибудь преобразовать данное выражение, чтобы упростить его, а еще лучше вычислить его значение? Для ответа на этот вопрос давайте внимательно поглядим на числа 81 и 1/9 в контексте нашего примера. Здесь несложно заметить, что эти числа допускают представление в виде степени числа 3 , действительно, 81=3 4 и 1/9=3 −2 . При этом исходный логарифм представляется в виде и появляется возможность применения формулы . Итак, .

Анализ разобранного примера рождает следующую мысль: при возможности можно попробовать выделить степень под знаком логарифма и в его основании, чтобы применить свойство логарифма степени или его следствия. Остается только выяснить, как эти степени выделять. Дадим некоторые рекомендации по этому вопросу.

Иногда довольно очевидно, что число под знаком логарифма и/или в его основании представляет собой некоторую целую степень, как в рассмотренном выше примере. Практически постоянно приходится иметь дело со степенями двойки, которые хорошо примелькались: 4=2 2 , 8=2 3 , 16=2 4 , 32=2 5 , 64=2 6 , 128=2 7 , 256=2 8 , 512=2 9 , 1024=2 10 . Это же можно сказать и про степени тройки: 9=3 2 , 27=3 3 , 81=3 4 , 243=3 5 , … Вообще, не помешает, если перед глазами будет находиться таблица степеней натуральных чисел в пределах десятка. Также не составляет труда работать с целыми степенями десяти, ста, тысячи и т.д.

Пример.

Вычислить значение или упростить выражение: а) log 6 216 , б) , в) log 0,000001 0,001 .

Решение.

а) Очевидно, что 216=6 3 , поэтому log 6 216=log 6 6 3 =3 .

б) Таблица степеней натуральных чисел позволяет представить числа 343 и 1/243 в виде степеней 7 3 и 3 −4 соответственно. Поэтому возможно следующее преобразование заданного логарифма:

в) Так как 0,000001=10 −6 и 0,001=10 −3 , то log 0,000001 0,001=log 10 −6 10 −3 =(−3)/(−6)=1/2 .

Ответ:

а) log 6 216=3 , б) , в) log 0,000001 0,001=1/2 .

В более сложных случаях для выделения степеней чисел приходится прибегать к .

Пример.

Преобразуйте выражение к более простому виду log 3 648·log 2 3 .

Решение.

Давайте посмотрим, что представляет собой разложение числа 648 на простые множители:

То есть, 648=2 3 ·3 4 . Таким образом, log 3 648·log 2 3=log 3 (2 3 ·3 4)·log 2 3 .

Теперь логарифм произведения преобразуем в сумму логарифмов, после чего применим свойства логарифма степени:
log 3 (2 3 ·3 4)·log 2 3=(log 3 2 3 +log 3 3 4)·log 2 3=
=(3·log 3 2+4)·log 2 3 .

В силу следствия из свойства логарифма степени, которому отвечает формула , произведение log32·log23 представляет собой произведение , а оно, как известно, равно единице. Учитывая это, получаем 3·log 3 2·log 2 3+4·log 2 3=3·1+4·log 2 3=3+4·log 2 3 .

Ответ:

log 3 648·log 2 3=3+4·log 2 3 .

Довольно часто выражения под знаком логарифма и в его основании представляют собой произведения или отношения корней и/или степеней некоторых чисел, например, , . Подобные выражения можно представить в виде степени. Для этого осуществляется переход от корней к степеням , и применяются и . Указанные преобразования позволяют выделить степени под знаком логарифма и в его основании, после чего применить свойства логарифмов.

Пример.

Вычислите: а) , б) .

Решение.

а) Выражение в основании логарифма есть произведение степеней с одинаковыми основаниями, по соответствующему свойству степеней имеем 5 2 ·5 −0,5 ·5 −1 =5 2−0,5−1 =5 0,5 .

Теперь преобразуем дробь под знаком логарифма: перейдем от корня к степени, после чего воспользуемся свойством отношения степеней с одинаковыми основаниями: .

Остается подставить полученные результаты в исходное выражение, воспользоваться формулой и закончить преобразования:

б) Так как 729=3 6 , а 1/9=3 −2 , то исходное выражение можно переписать в виде .

Дальше применяем свойство корня из степени, осуществляем переход от корня к степени и используем свойство отношения степеней, чтобы преобразовать основание логарифма в степень: .

Учитывая последний результат, имеем .

Ответ:

а) , б) .

Понятно, что в общем случае для получения степеней под знаком логарифма и в его основании могут требоваться различные преобразования различных выражений. Приведем пару примеров.

Пример.

Чему равно значение выражения: а) , б) .

Решение.

Дальше отмечаем, что заданное выражение имеет вид log A B p , где A=2 , B=x+1 и p=4 . Числовые выражения подобного вида мы преобразовывали по свойству логарифма степени log a b p =p·log a b , поэтому, с заданным выражением хочется поступить аналогично, и от log 2 (x+1) 4 перейти к 4·log 2 (x+1) . А теперь давайте вычислим значение исходного выражения и выражения, полученного после преобразования, например, при x=−2 . Имеем log 2 (−2+1) 4 =log 2 1=0 , а 4·log 2 (−2+1)=4·log 2 (−1) - не имеющее смысла выражение. Это вызывает закономерный вопрос: «Что мы сделали не так»?

А причина в следующем: мы выполнили преобразование log 2 (x+1) 4 =4·log 2 (x+1) , опираясь на формулу log a b p =p·log a b , но данную формулу мы имеем право применять лишь при выполнении условий a>0 , a≠1 , b>0 , p - любое действительное число. То есть, проделанное нами преобразование имеет место, если x+1>0 , что то же самое x>−1 (для A и p – условия выполнены). Однако в нашем случае ОДЗ переменной x для исходного выражения состоит не только из промежутка x>−1 , но и из промежутка x<−1 . Но для x<−1 мы не имели права осуществлять преобразование по выбранной формуле.

Необходимость учета ОДЗ

Продолжим разбирать преобразование выбранного нами выражения log 2 (x+1) 4 , и сейчас посмотрим, что происходит с ОДЗ при переходе к выражению 4·log 2 (x+1) . В предыдущем пункте мы нашли ОДЗ исходного выражения – это есть множество (−∞, −1)∪(−1, +∞) . Теперь найдем область допустимых значений переменной x для выражения 4·log 2 (x+1) . Она определяется условием x+1>0 , которому отвечает множество (−1, +∞) . Очевидно, что при переходе от log 2 (x+1) 4 к 4·log 2 (x+1) происходит сужение области допустимых значений. А мы договорились избегать преобразований, приводящих к сужению ОДЗ, так как это может приводить к различным негативным последствиям.

Здесь для себя стоит отметить, что полезно контролировать ОДЗ на каждом шаге преобразования и не допускать ее сужения. И если вдруг на каком-то этапе преобразования произошло сужение ОДЗ, то стоит очень внимательно посмотреть, а допустимо ли данное преобразование и имели ли мы право его проводить.

Справедливости ради скажем, что на практике обычно приходится работать с выражениями, у которых ОДЗ переменных такова, что позволяет при проведении преобразований использовать свойства логарифмов без ограничений в уже известном нам виде, причем как слева направо, так и справа налево. К этому быстро привыкаешь, и начинаешь проводить преобразования механически, не задумываясь, а можно ли было их проводить. И в такие моменты, как назло, проскальзывают более сложные примеры, в которых неаккуратное применение свойств логарифмов приводит к ошибкам. Так что нужно всегда быть на чеку, и следить, чтобы не происходило сужения ОДЗ.

Не помешает отдельно выделить основные преобразования на базе свойств логарифмов, которые нужно проводить очень внимательно, которые могут приводить к сужению ОДЗ, и как следствие – к ошибкам:

Некоторые преобразования выражений по свойствам логарифмов могут приводить и к обратному - расширению ОДЗ. Например, переход от 4·log 2 (x+1) к log 2 (x+1) 4 расширяет ОДЗ с множества (−1, +∞) до (−∞, −1)∪(−1, +∞) . Такие преобразования имеют место, если оставаться в рамках ОДЗ для исходного выражения. Так только что упомянутое преобразование 4·log 2 (x+1)=log 2 (x+1) 4 имеет место на ОДЗ переменной x для исходного выражения 4·log 2 (x+1) , то есть, при x+1>0 , что то же самое (−1, +∞) .

Теперь, когда мы обговорили нюансы, на которые нужно обращать внимание при преобразовании выражений с переменными с использованием свойств логарифмов, остается разобраться, как правильно нужно эти преобразования проводить.

X+2>0 . Выполняется ли оно в нашем случае? Для ответа на этот вопрос взглянем на ОДЗ переменной x . Она определяется системой неравенств , которая равносильна условию x+2>0 (при необходимости смотрите статью решение систем неравенств ). Таким образом, мы можем спокойно применять свойство логарифма степени.

Имеем
3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =
=3·7·lg(x+2)−lg(x+2)−5·4·lg(x+2)=
=21·lg(x+2)−lg(x+2)−20·lg(x+2)=
=(21−1−20)·lg(x+2)=0 .

Можно действовать и иначе, благо ОДЗ позволяет это делать, например так:

Ответ:

3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =0 .

А что делать, когда на ОДЗ не выполняются условия, сопутствующие свойствам логарифмов? Будем разбираться с этим на примерах.

Пусть от нас требуется упростить выражение lg(x+2) 4 −lg(x+2) 2 . Преобразование этого выражения, в отличие от выражения из предыдущего примера, не допускает вольготного использования свойства логарифма степени. Почему? ОДЗ переменной x в данном случае представляет собой объединение двух промежутков x>−2 и x<−2 . При x>−2 мы можем спокойно применять свойство логарифма степени и действовать как в разобранном выше примере: lg(x+2) 4 −lg(x+2) 2 =4·lg(x+2)−2·lg(x+2)=2·lg(x+2) . Но ОДЗ содержит еще один промежуток x+2<0 , для которого последнее преобразование будет некорректно. Что же делать при x+2<0 ? В подобных случаях на помощь приходит . Определение модуля позволяет выражение x+2 при x+2<0 представить как −|x+2| . Тогда при x+2<0 от lg(x+2) 4 −lg(x+2) 2 переходим к lg(−|x+2|) 4 −lg(−|x+2|) 2 и дальше в силу свойств степени к lg|x+2| 4 −lg|x+2| 2 . Полученное выражение можно преобразовывать по свойству логарифма степени, так как |x+2|>0 при любых значениях переменной. Имеем lg|x+2| 4 −lg|x+2| 2 =4·lg|x+2|−2·lg|x+2|=2·lg|x+2| . Теперь можно освободиться от модуля, так как он свое дело сделал. Так как мы проводим преобразование при x+2<0 , то 2·lg|x+2|=2·lg(−(x+2)) . Итак, можно считать, что мы справились с поставленной задачей. Ответ: . Полученный результат можно записать компактно с использованием модуля как .

Рассмотрим еще один пример, чтобы работа с модулями стала привычной. Пусть мы задумали от выражения перейти к сумме и разности логарифмов линейных двучленов x−1 , x−2 и x−3 . Сначала находим ОДЗ:

На промежутке (3, +∞) значения выражений x−1 , x−2 и x−3 – положительные, поэтому мы спокойно можем применять свойства логарифма суммы и разности:

А на интервале (1, 2) значения выражения x−1 – положительные, а значения выражений x−2 и x−3 – отрицательные. Поэтому, на рассматриваемом интервале представляем x−2 и x−3 с использованием модуля как −|x−2| и −|x−3| соответственно. При этом

Теперь можно применять свойства логарифма произведения и частного, так как на рассматриваемом интервале (1, 2) значения выражений x−1 , |x−2| и |x−3| - положительные.

Имеем

Полученные результаты можно объединить:

Вообще, аналогичные рассуждения позволяют на базе формул логарифма произведения, отношения и степени получить три практически полезных результата, которыми довольно удобно пользоваться:

  • Логарифм произведения двух произвольных выражений X и Y вида log a (X·Y) можно заменить суммой логарифмов log a |X|+log a |Y| , a>0 , a≠1 .
  • Логарифм частного вида log a (X:Y) можно заменить разностью логарифмов log a |X|−log a |Y| , a>0 , a≠1 , X и Y – произвольные выражения.
  • От логарифма некоторого выражения B в четной степени p вида log a B p можно перейти к выражению p·log a |B| , где a>0 , a≠1 , p – четное число и B – произвольное выражение.

Аналогичные результаты приведены, например, в указаниях к решению показательных и логарифмических уравнений в сборнике задач по математике для поступающих в вузы под редакцией М. И. Сканави .

Пример.

Упростите выражение .

Решение.

Было бы хорошо применить свойства логарифма степени, суммы и разности. Но можем ли мы здесь это делать? Для ответа на этот вопрос нам требуется знать ОДЗ.

Определим ее:

Довольно очевидно, что выражения x+4 , x−2 и (x+4) 13 на области допустимых значений переменной x могут принимать как положительные, так и отрицательные значения. Поэтому нам придется действовать через модули.

Свойства модуля позволяют переписать как , поэтому

Также ничто не мешает воспользоваться свойством логарифма степени, после чего привести подобные слагаемые:

К такому же результату приводит и другая последовательность преобразований:

и так как на ОДЗ выражение x−2 может принимать как положительные, так и отрицательные значения, то при вынесении четного показателя степени 14

Область допустимых значений (ОДЗ) логарифма

Теперь поговорим об ограничениях (ОДЗ - область допустимых значений переменных).

Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:

То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться.

Почему так?

Начнем с простого: допустим, что. Тогда, например, число не существует, так как в какую бы степень мы не возводили, всегда получается. Более того, не существует ни для какого. Но при этом может равняться чему угодно (по той же причине - в любой степени равно). Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.

Похожая проблема у нас и в случае: в любой положительной степени - это, а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что).

При мы столкнемся с проблемой возведения в дробную степень (которая представляется в виде корня: . Например, (то есть), а вот не существует.

Поэтому и отрицательные основания проще выбросить, чем возиться с ними.

Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).

В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:

Решим уравнение.

Вспомним определение: логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент. И по условию, эта степень равна: .

Получаем обычное квадратное уравнение: . Решим его с помощью теоремы Виета: сумма корней равна, а произведение. Легко подобрать, это числа и.

Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?

Это явно неверно, так как основание не может быть отрицательным, то есть корень - «сторонний».

Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:

Тогда, получив корни и, сразу отбросим корень, и напишем правильный ответ.

Пример 1 (попробуй решить самостоятельно):

Найдите корень уравнения. Если корней несколько, в ответе укажите меньший из них.

Решение:

В первую очередь напишем ОДЗ:

Теперь вспоминаем, что такое логарифм: в какую степень нужно возвести основание, чтобы получить аргумент? Во вторую. То есть:

Казалось бы, меньший корень равен. Но это не так: согласно ОДЗ корень - сторонний, то есть это вообще не корень данного уравнения. Таким образом, уравнение имеет только один корень: .

Ответ: .

Основное логарифмическое тождество

Вспомним определение логарифма в общем виде:

Подставим во второе равенство вместо логарифм:

Это равенство называется основным логарифмическим тождеством . Хотя по сути это равенство - просто по-другому записанное определение логарифма :

Это степень, в которую нужно возвести, чтобы получить.

Например:

Реши еще следующие примеры:

Пример 2.

Найдите значение выражения.

Решение:

Вспомним правило из раздела : , то есть, при возведении степени в степень показатели перемножаются. Применим его:

Пример 3.

Докажите, что.

Решение:

Свойства логарифмов

К сожалению, задачи не всегда такие простые - зачастую сперва нужно упростить выражение, привести его к привычному виду, и только потом будет возможно посчитать значение. Это проще всего сделать, зная свойства логарифмов . Так что давай выучим основные свойства логарифмов. Каждое из них я буду доказывать, ведь любое правило проще запомнить, если знать, откуда оно берется.

Все эти свойства нужно обязательно запомнить, без них большинство задач с логарифмами решить не получится.

А теперь обо всех свойствах логарифмов подробнее.

Свойство 1:

Доказательство:

Пусть, тогда.

Имеем: , ч.т.д.

Свойство 2: Сумма логарифмов

Сумма логарифмов с одинаковыми основаниями равна логарифму произведения: .

Доказательство:

Пусть, тогда. Пусть, тогда.

Пример: Найдите значение выражения: .

Решение: .

Только что выученная формула помогает упростить сумму логарифмов, а не разность, так что сразу эти логарифмы не объединить. Но можно сделать наоборот - «разбить» первый логарифм на два:А вот обещанное упрощение:
.
Зачем это нужно? Ну например: чему равно?

Теперь очевидно, что.

Теперь упрости сам:

Задачи:

Ответы:

Свойство 3: Разность логарифмов:

Доказательство:

Все точно так же, как и в пункте 2:

Пусть, тогда.

Пусть, тогда. Имеем:

Пример из прошлого пункта теперь становится еще проще:

Пример посложнее: . Догадаешься сам, как решить?

Здесь нужно заметить, что у нас нету ни одной формулы про логарифмы в квадрате. Это что-то сродни выражению - такое сразу не упростить.

Поэтому отвлечемся от формул про логарифмы, и подумаем, какие вообще формулы мы используем в математике чаще всего? Еще начиная с 7 класса!

Это - . Нужно привыкнуть к тому, что они везде! И в показательных, и в тригонометрических, и в иррациональных задачах они встречаются. Поэтому их нужно обязательно помнить.

Если присмотреться к первым двум слагаемым, становится ясно, что это разность квадратов :

Ответ для проверки:

Упрости сам.

Примеры

Ответы.

Свойство 4: Вынесение показателя степени из аргумента логарифма:

Доказательство: И здесь тоже используем определение логарифма:пусть, тогда. Имеем: , ч.т.д.

Можно понять это правило так:

То есть степень аргумента выносится вперед логарифма, как коэффициент.

Пример: Найдите значение выражения.

Решение: .

Реши сам:

Примеры:

Ответы:

Свойство 5: Вынесение показателя степени из основания логарифма:

Доказательство: Пусть, тогда.

Имеем: , ч.т.д.
Запоминаем: из основания степень выносится как обратное число, в отличии от предыдущего случая!

Свойство 6: Вынесение показателя степени из основания и аргумента логарифма:

Или если степени одинаковые: .

Свойство 7: Переход к новому основанию:

Доказательство: Пусть, тогда.

Имеем: , ч.т.д.

Свойство 8: Замена местами основания и аргумента логарифма:

Доказательство: Это частный случай формулы 7: если подставить, получим: , ч.т.д.

Рассмотрим еще несколько примеров.

Пример 4.

Найдите значение выражения.

Используем свойство логарифмов № 2 - сумма логарифмов с одинаковым основанием равна логарифму произведения:

Пример 5.

Найдите значение выражения.

Решение:

Используем свойство логарифмов № 3 и № 4:

Пример 6.

Найдите значение выражения.

Решение:

Используем свойство № 7 - перейдем к основанию 2:

Пример 7.

Найдите значение выражения.

Решение:

Как тебе статья?

Если ты читаешь эти строки, значит ты прочитал всю статью.

И это круто!

А теперь расскажи нам как тебе статья?

Научился ты решать логарифмы? Если нет, то в чем проблема?

Пиши нам в комментах ниже.

И, да, удачи на экзаменах.

На ЕГЭ и ОГЭ и вообще в жизни

Задания, решение которых заключается в преобразовании логарифмических выражений , довольно часто встречаются на ЕГЭ.

Чтобы успешно справиться с ними при минимальной затрате времени кроме основных логарифмических тождеств, необходимо знать и правильно использовать ещё некоторые формулы.

Это: a log а b = b, где а, b > 0, а ≠ 1 (Она вытекает непосредственно из определения логарифма).

log a b = log с b / log с а или log а b = 1/log b а
где а, b, с > 0; а, с ≠ 1.

log а m b n = (m/n) log |а| |b|
где а, b > 0, а ≠ 1, m, n Є R, n ≠ 0.

а log с b = b log с а
где а, b, с > 0 и а, b, с ≠ 1

Чтобы показать справедливость четвертого равенства прологарифмируем левую и правую часть по основанию а. Получим log а (а log с b) = log а (b log с а) или log с b = log с а · log а b; log с b = log с а · (log с b / log с а); log с b = log с b.

Мы доказали равенство логарифмов, значит, равны и выражения, стоящие под логарифмами. Формула 4 доказана.

Пример 1.

Вычислите 81 log 27 5 log 5 4 .

Решение.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Следовательно,

log 27 5 · log 5 4 = 1/3 log 3 5 · (log 3 4 / log 3 5) = 1/3 log 3 4.

Тогда 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

Самостоятельно можно выполнить следующее задание.

Вычислить (8 log 2 3 + 3 1/ log 2 3) - log 0,2 5.

В качестве подсказки 0,2 = 1/5 = 5 -1 ; log 0,2 5 = -1.

Ответ: 5.

Пример 2.

Вычислите (√11) log √3 9- log 121 81 .

Решение.

Выполним замену выражений: 9 = 3 2 , √3 = 3 1/2 , log √3 9 = 4,

121 = 11 2 , 81 = 3 4 , log 121 81 = 2 log 11 3 (использовалась формула 3).

Тогда (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / (11 log 11 3) = 121/3.

Пример 3.

Вычислите log 2 24/ log 96 2- log 2 192 / log 12 2.

Решение.

Логарифмы, содержащиеся в примере, заменим логарифмами с основанием 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 · 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

log 2 192 = log 2 (2 6 · 3) = (log 2 2 6 + log 2 3) = (6 + log 2 3);

log 2 24 = log 2 (2 3 · 3) = (log 2 2 3 + log 2 3) = (3 + log 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 · 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Тогда log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/(2 + log 2 3)) =

= (3 + log 2 3) · (5 + log 2 3) – (6 + log 2 3)(2 + log 2 3).

После раскрытия скобок и приведения подобных слагаемых получим число 3. (При упрощении выражения можно log 2 3 обозначить через n и упрощать выражение

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Ответ: 3.

Самостоятельно можно выполнить следующее задание:

Вычислить (log 3 4 + log 4 3 + 2) · log 3 16 · log 2 144 3 .

Здесь необходимо сделать переход к логарифмам по основанию 3 и разложение на простые множители больших чисел.

Ответ:1/2

Пример 4.

Даны три числа А = 1/(log 3 0,5), В = 1/(log 0,5 3), С = log 0,5 12 – log 0,5 3. Расположите их в порядке возрастания.

Решение.

Преобразуем числа А = 1/(log 3 0,5) = log 0,5 3; С = log 0,5 12 – log 0,5 3 = log 0,5 12/3 = log 0,5 4 = -2.

Сравним их

log 0,5 3 > log 0,5 4 = -2 и log 0,5 3 < -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Или -2 < log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Ответ. Следовательно, порядок размещения чисел: С; А; В.

Пример 5.

Сколько целых чисел расположено на интервале (log 3 1 / 16 ; log 2 6 48).

Решение.

Определим между какими степенями числа 3 находится число 1 / 16 . Получим 1 / 27 < 1 / 16 < 1 / 9 .

Так как функция у = log 3 х – возрастающая, то log 3 (1 / 27) < log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 · 4 / 3) = log 6 36 + log 6 (4 / 3) = 2 + log 6 (4 / 3). Сравним log 6 (4 / 3) и 1 / 5 . А для этого сравним числа 4 / 3 и 6 1/5 . Возведём оба числа в 5 степень. Получим (4 / 3) 5 = 1024 / 243 = 4 52 / 243 < 6. Следовательно,

log 6 (4 / 3) < 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Следовательно, интервал (log 3 1 / 16 ; log 6 48) включает в себя промежуток [-2; 4] и на нём размещаются целые числа -2; -1; 0; 1; 2; 3; 4.

Ответ: 7 целых чисел.

Пример 6.

Вычислите 3 lglg 2/ lg 3 - lg20.

Решение.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Тогда 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0,1 = -1.

Ответ: -1.

Пример 7.

Известно, что log 2 (√3 + 1) + log 2 (√6 – 2) = А. Найдите log 2 (√3 –1) + log 2 (√6 + 2).

Решение.

Числа (√3 + 1) и (√3 – 1); (√6 – 2) и (√6 + 2) – сопряжённые.

Проведем следующее преобразование выражений

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Тогда log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – А.

Ответ: 2 – А.

Пример 8 .

Упростите и найдите приближенное значение выражения (log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9.

Решение.

Все логарифмы приведём к общему основанию 10.

(log 3 2 · log 4 3 · log 5 4 · log 6 5 · … · log 10 9 = (lg 2 / lg 3) · (lg 3 / lg 4)· (lg 4 / lg 5) · (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0,3010. (Приближенное значение lg 2 можно найти с использованием таблицы, логарифмической линейки либо калькулятора).

Ответ: 0,3010.

Пример 9 .

Вычислить log а 2 b 3 √(a 11 b -3), если log √ а b 3 = 1. (В этом примере, а 2 b 3 – основание логарифма).

Решение.

Если log √ а b 3 = 1, то 3/(0,5 log а b = 1. И log а b = 1/6.

Тогда log а 2 b 3√(a 11 b -3) = 1/2 log а 2 b 3 (a 11 b -3) = log а (a 11 b -3) / (2log а (a 2 b 3)) = (log а a 11 + log а b -3) / (2(log а a 2 + log а b 3)) = (11 – 3log а b) / (2(2 + 3log а b)) Учитывая то, что log а b = 1/6 получим (11 – 3 · 1 / 6) / (2(2 + 3 · 1 / 6)) = 10,5/5 = 2,1.

Ответ: 2,1.

Самостоятельно можно выполнить следующее задание:

Вычислить log √3 6 √2,1, если log 0,7 27 = а.

Ответ: (3 + а) / (3а).

Пример 10.

Вычислить 6,5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Решение.

6,5 4/ log 3 169 · 3 1/ log 4 13 + log 125 = (13/2) 4/2 log 3 13 · 3 2/ log 2 13 + 2log 5 5 3 = (13/2) 2 log 13 3 · 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 · (3 log 13 2) 2 + 6 = (3 2 /(2 log 13 3) 2) · (2 log 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (формула 4))

Получим 9 + 6 = 15.

Ответ: 15.

Остались вопросы? Не знаете, как найти значение логарифмического выражения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

основными свойствами .

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x: y).

одинаковые основания

Log6 4 + log6 9.

Теперь немного усложним задачу.

Примеры решения логарифмов

Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x >

Задача. Найдите значение выражения:

Переход к новому основанию

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

Задача. Найдите значение выражения:

Смотрите также:


Основные свойства логарифма

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Экспонента равна 2,718281828…. Чтобы запомнить экспоненту можете изучить правило: экспонента равна 2,7 и два раза год рождения Льва Николаевича Толстого.

Основные свойства логарифмов

Зная это правило будете знать и точное значение экспоненты, и дату рождения Льва Толстого.

Примеры на логарифмы

Прологарифмировать выражения

Пример 1.
а). х=10ас^2 (а>0,с>0).

По свойствам 3,5 вычисляем

2.

3.



Пример 2. Найти х, если


Пример 3. Пусть задано значение логарифмов

Вычислить log(x), если




Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: logax и logay. Тогда их можно складывать и вычитать, причем:

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x: y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания . Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 496.

Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем.

Формулы логарифмов. Логарифмы примеры решения.

Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. logaa = 1 — это. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. loga 1 = 0 — это. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Смотрите также:

Логарифмом числа b по основанию a обозначают выражение . Вычислить логарифм значит найти такой степень x (),при котором выполняется равенство

Основные свойства логарифма

Приведенные свойства необходимо знать, поскольку, на их основе решаются практически все задачи и примеры связаны с логарифмами. Остальные экзотических свойств можно вывести путем математических манипуляций с данными формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При вычислениях формулы суммы и разности логарифмов (3,4) встречаются довольно часто. Остальные несколько сложные, но в ряде задач являются незаменимыми для упрощения сложных выражений и вычисления их значений.

Распространены случаи логарифмов

Одними из распространенных логарифмов такие в которых основание ровное десять, экспоненте или двойке.
Логарифм по основанию десять принято называть десятичным логарифмом и упрощенно обозначать lg(x).

Из записи видно, что основы в записи не пишут. Для примера

Натуральный логарифм – это логарифм у которого за основу экспонента (обозначают ln(x)).

Экспонента равна 2,718281828…. Чтобы запомнить экспоненту можете изучить правило: экспонента равна 2,7 и два раза год рождения Льва Николаевича Толстого. Зная это правило будете знать и точное значение экспоненты, и дату рождения Льва Толстого.

И еще один важный логарифм по основанию два обозначают

Производная от логарифм функции равна единице разделенной на переменную

Интеграл или первообразная логарифма определяется зависимостью

Приведенного материала Вам достаточно, чтобы решать широкий класс задач связанных с логарифмами и логарифмирования. Для усвоения материала приведу лишь несколько распространенных примеров из школьной программы и ВУЗов.

Примеры на логарифмы

Прологарифмировать выражения

Пример 1.
а). х=10ас^2 (а>0,с>0).

По свойствам 3,5 вычисляем

2.
По свойству разницы логарифмов имеем

3.
Используя свойства 3,5 находим

На вид сложное выражение с использованием ряда правил упрощается к виду

Нахождение значений логарифмов

Пример 2. Найти х, если

Решение. Для вычисления применим до последнего слагаемого 5 и 13 свойства

Подставляем в запись и скорбим

Поскольку основания равные, то приравниваем выражения

Логарифмы. Начальный уровень.

Пусть задано значение логарифмов

Вычислить log(x), если

Решение: Прологарифмируем переменную, чтобы расписать логарифм через сумму слагаемых


На этом знакомство с логарифмами и их свойствами только начинается. Упражняйтесь в вычислениях, обогащайте практические навыки — полученные знания Вам скоро понадобятся для решения логарифмических уравнений. Изучив основные методы решения таких уравнений мы расширим Ваши знания для другой не менее важной теме — логарифмические неравенства …

Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: logax и logay. Тогда их можно складывать и вычитать, причем:

  1. logax + logay = loga (x · y);
  2. logax − logay = loga (x: y).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания . Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Задача. Найдите значение выражения: log6 4 + log6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Задача. Найдите значение выражения: log2 48 − log2 3.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм.

Как решать логарифмы

Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 496.

Избавимся от степени в аргументе по первой формуле:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 24; 49 = 72. Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм logax. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. logaa = 1 — это. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. loga 1 = 0 — это. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Разделы: Математика

Вид урока: урок обобщения и систематизации знаний

Цели:

  • актуализировать знания учащихся о логарифмах и их свойствах в рамках обобщающего повторения и подготовки к ЕГЭ;
  • способствовать развитию мыслительной деятельности учащихся, навыков применения теоретических знаний при выполнении упражнений;
  • способствовать развитию личностных качеств учащихся, навыков самоконтроля и самооценки своей деятельности; воспитывать трудолюбие, терпеливость, упорство, самостоятельность.

Оборудование: компьютер, проектор, презентация (приложение 1 ), карточки с домашним заданием (можно прикрепить файл с заданием в электронном дневнике).

Ход урока

I. Организационный момент. Приветствие, настрой на урок.

II. Обсуждение домашнего задания.

III. Сообщение темы и цели урока. Мотивация. (Слайд 1) Презентация .

Мы продолжаем обобщающее повторение курса математики в рамках подготовки к ЕГЭ. И сегодня на уроке мы поговорим о логарифмах и их свойствах.

Задания на вычисление логарифмов и преобразование логарифмических выражений обязательно присутствуют в контрольно-измерительных материалах как базового, так и профильного уровня. Поэтому цель нашего урока – восстановить представления о смысле понятия “логарифм” и актуализировать навыки преобразования логарифмических выражений. Запишите в тетрадях тему урока.

IV. Актуализация знаний.

1. /Устно/ Для начала вспомним, что называют логарифмом. (Слайд 2)

(Логарифмом положительного числа b по основанию a (где а > 0, а?1) называется показатель степени, в которую нужно возвести число a, чтобы получить число b)

Log a b = n <-> а n = b , (а> 0, а 1, b > 0)

Итак, “ЛОГАРИФМ” - это “ПОКАЗАТЕЛЬ СТЕПЕНИ”!

(Слайд 3) Тогда а n = b можно переписать в виде = b – основное логарифмическое тождество.

Если основание а = 10, то логарифм называют десятичным и обозначают lgb.

Если а = e, то логарифм называют натуральным и обозначают lnb.

2. /Письменно/ (Слайд 4) Заполните пропуски, чтобы получились верные равенства:

Log ? x + Log a ? = Log ? (?y)

Log a ? - Log ? y = Log ? (x/?)

Log a x ? = pLog ? (?)

Проверка:

1; 1; a,y,x; x,a,a,y; p,a,x.

Это свойства логарифмов. И еще группа свойств: (Слайд 5)

Проверка:

a,1,n,x; n,x,p,a; x,b,a,y; a,x,b; a,1,b.

V. Устная работа

(Слайд 6) №1. Вычислите:

а) б) в) г) ; д) .

Ответы : а) 4; б) – 2; в) 2; г) 7; д) 27.

(Слайд 7) №2. Найти Х:

а) ; б) (Ответы: а) 1/4; б) 9).

№3. Имеет ли смысл рассматривать такой логарифм:

а) ; б) ; в) ? (Нет)

VI. Самостоятельная работа в группах, сильные ученики – консультанты . (Слайд 8)

№ 1. Вычислите: .

№ 2. Упростите:

№ 3. Найдите значение выражения , если

№ 4. Упростите выражение:

№ 5. Вычислите:

№ 6. Вычислите:

№ 7. Вычислите:

№ 8. Вычислите:

После выполнения – проверка и обсуждение по заготовленному решению или с помощью документ – камеры.

VII. Решение задания повышенной сложности (сильный ученик на доске, остальные – в тетрадях) (Слайд 9)

Найдите значение выражения:

VIII. Домашнее задание (на карточках) дифференцированное. (Слайд 10)

№1. Вычислите:

№2. Найдите значение выражения:

  • Ф.Ф.Лысенко и др. Математика. Тематические тесты 10 – 11 класс. Часть 1 / Ростов-на-Дону: “Легион”, 2008
  • В.В.Кочагин Интенсивная подготовка. ЕГЭ Математика. / М: “Эксмо”, 2008
  • ИНТЕРНЕТ-РЕСУРСЫ:

    1. Л.В.Артамонова, учитель математики МОУ “Москаленский лицей” Презентация “В стране логарифмов”
    2. А.А.Кукшева, МОУ “Егорьевская СОШ” Презентация “Логарифмы и их свойства”