Какой буквой обозначаются действительные числа. Разряды и классы. Расширенный алгоритм Эвклида


Что такое число? ЧИСЛО - одно из основных понятий математики, зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счётом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3, Натуральные числа – это числа, используемые при счёте предметов. 1


История. На раскопках стойбища древних людей нашли волчью кость, на которой 30 тысяч лет тому назад, какой – то древний охотник нанёс пятьдесят пять зарубок. Видно, что, делая эти зарубки, он считал по пальцам. Узор на кости состоял из одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных длинной чертой. Также в Сибири и в других местах были найдены, сделанные в ту же далёкую эпоху каменные орудия и украшения, на которых тоже были чёрточки и точки, сгруппированные по 3, по 5 или по 7.Кельты - древний народ, живший в Европе 2500 лет тому назад, являющиеся предками французов и англичан, считали двадцатками (две руки и две ноги давали двадцать пальцев). Следы этого сохранились во французском языке, где слово «восемьдесят» звучит как «четыре раза двадцать». Двадцатками считали и другие народы – предки датчан и голландцев, осетин и грузин. 2




Чётные и нечётные числа. Чётное число целое число, которое делится без остатка на 2: …, 2, 4, 6, 8, … Нечётное число целое число, которое не делится без остатка на 2: …, 1, 3, 5, 7, 9, … Пифагор определяя число как энергию и считал, что через науку о числах раскрывается тайна Вселенной, ибо число заключает в себе тайну вещей. Чётные числа Пифагор считал женскими, а нечётные – мужскими: 2+3=5 5- это символ семьи, брака. Чётные и нечётные числа = женские и мужские числа. 4


Простые и составные. Простое число – это натуральное число, имеющее ровно два различных натуральных делителя: единицу и само себя. Последовательность простых чисел начинается так: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, … Составные числа- это числа имеющие 3 и больше делителей. Изучением свойств простых чисел занимается теория чисел. Таким образом, все натуральные числа больше единицы разбиваются на простые и составные. 5


Совершенные и несовершенные числа. Совершенные числа, целые положительные числа, равные сумме всех своих правильных (т. е. меньших этого числа) делителей. Например, числа 6 = и 28 = являются совершенными. До сих пор (1976) неизвестно ни одного нечётного Сов. ч. и вопрос о существовании их остаётся открытым. Исследования о Сов. ч. были начаты пифагорейцами, приписывавшими особый мистический смысл числам и их сочетаниям. Несовершенными Пифагор называл числа, сумма правильных делителей, которых меньше его самого. 6




Магические числа. Секреты чисел привлекают людей, заставляют вникать, разбираться, сравнивать свои выводы с реальным соотношением дел. К цифрам в древнем мире относились очень трепетно. Люди, познавшие их, считались великими, их приравнивали к божествам. Самый простой пример – это отсутствие во многих странах самолётов с бортовым номером 13, этажей и номеров в гостиницах с номером «13». 8
Магический ряд 2 – число равновесия и контраста, и поддерживающие устойчивость, смешивающие позитивные и негативные качества. 6 – Символ надёжности. Это идеальное число, которое делится как на чётное число(2), так и на нечётное(3), таким образом, объединяя элементы каждого. 8 – Число материального успеха. Оно означает надёжность, доведённую до совершенства, поскольку представлено двойным квадратом. Разделённое пополам, оно имеет равные части (4 и 4). Если его ещё разделить, то части будут тоже равными (2, 2, 2, 2), показывая четырёхкратное равновесие. 9 – Число всеобщего успеха, самое большое из всех цифр. Как трёхкратное числу 3, девятка превращает неустойчивость в стремление. 10





Найдите на числовой окружности точки с данной абсциссой. Координаты. Свойство координат точек. Центр числовой окружности. От окружности к тригонометру. Найдите на числовой окружности точки. Точки с абсциссой. Тригонометр. На числовой окружности укажите точку. Числовая окружность на координатной плоскости. Числовая окружность. Точки с ординатой. Назвать координату точки. Назвать линию и координату точки.

««Производные» 10 класс алгебра» - Применение производной для исследования функций. Производная равна нулю. Найдите точки. Обобщаем информацию. Характер монотонности функции. Применение производной к исследованию функций. Теоретическая разминка. Закончите формулировки утверждений. Выберите верное утверждение. Теорема. Сравните. Производная положительна. Сравните формулировки теорем. Функция возрастает. Достаточные условия экстремума.

««Тригонометрические уравнения» 10 класс» - Значения из промежутка. X= tg х. Укажите корни. Верно ли равенство. Серии корней. Уравнение ctg t = a. Определение. Cos 4x. Найти корни уравнения. Уравнение tg t = a. Sin х. Имеет ли смысл выражение. Sin x =1. Не делай никогда того, чего не знаешь. Продолжите фразу. Сделаем выборку корней. Решите уравнение. Ctg x = 1. Тригонометрические уравнения. Уравнение.

«Алгебра «Производные»» - Уравнение касательной. Происхождение терминов. Решить задачу. Производная. Материальная точка. Формулы дифференцирования. Механический смысл производной. Критерии оценок. Функция производная. Касательная к графику функции. Определение производной. Уравнение касательной к графику функции. Алгоритм отыскания производной. Пример нахождения производной. Структура изучения темы. Точка движется прямолинейно.

«Кратчайший путь» - Путь в орграфе. Пример двух разных графов. Ориентированные графы. Примеры ориентированных графов. Достижимость. Кратчайший путь из вершины A в вершину D. Описание алгоритма. Преимущества иерархического списка. Взвешенные графы. Путь в графе. Программа “ProGraph”. Смежные вершины и рёбра. Степень вершины. Матрица смежности. Длина пути во взвешенном графе. Пример матрицы смежности. Нахождение кратчайшего пути.

«История тригонометрии» - Якоб Бернулли. Техника оперирования с тригонометрическими функциями. Учение об измерении многогранников. Леонард Эйлер. Развитие тригонометрии с XVI века до нашего времени. Ученику приходится встречаться с тригонометрией трижды. До сих пор тригонометрия формировалась и развивалась. Построение общей системы тригонометрических и примыкающих к ним знаний. Проходит время, и тригонометрия возвращается к школьникам.

Данная статья посвящена теме "Действительные числа". В статье дается определение действительных чисел, иллюстрируется их положение на координатной прямой, рассматриваются способы задания действительных чисел числовыми выражениями.

Определение действительных чисел

Целые и дробные числа вместе составляют рациональные числа. В свою очередь, рациональные и иррациональные числа составляют действительные числа. Как дать определение, что такое действительные числа?

Определение 1

Действительные числа - это рациональные и иррациональные числа. Множество действительных чисел обозначается через R.

Данное определение можно записать иначе с учетом следующего:

  1. Рациональные числа можно представить в виде конечной десятичной дроби или бесконечной периодической десятичной дроби.
  2. Иррациональные числа представляют собой бесконечные непериодические десятичные дроби.
Определение 2

Действительные числа - числа, которые можно записать в виде конечной или бесконечной (периодической или непериодической) десятичной дроби.

Действительные числа - это любые рациональные и иррациональные числа. Приведем примеры таких чисел: 0 ; 6 ; 458 ; 1863 ; 0 , 578 ; - 3 8 ; 26 5 ; 0 , 145 (3) ; log 5 12 .

Нуль также является действительным числом. Согласно определению, существуют как положительные, так и отрицательные действительные числа. Нуль является единственным действительным числом, которое не положительно и не отрицательно.

Еще одно название для действительных чисел - вещественные числа. Эти числа позволяют описывать значение непрерывно меняющейся величины без введения эталонного (единичного) значения этой величины.

Координатная прямая и действительные числа

Каждой точке не координатной прямой соответствует определенное и единственное действительное число. Иными словами, действительные числа занимают всю координатную прямую, а между точками кривой и числами присутствует взаимно-однозначное соответствие.

Представления действительных чисел

Под определение дейситвительных чисел попадают:

  1. Натуральные числа.
  2. Целые числа.
  3. Десятичные дроби.
  4. Обыкновенные дроби.
  5. Смешанные числа.

Также действительные числа часто представляются в виде выражений со степенями, корнями и логарифмами. Сумма, разность произведение и частное действительных чисел также являются действительными числами.

Значение любого выражения, составленного из действительных чисел, также будет являться действительным числом.

Например, значения выражений sin 2 3 π · e - 2 8 5 · 10 log 3 2 и t g 6 7 6 693 - 8 π 3 2 - действительные числа.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Интуитивное представление о числе, по–видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно. Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей. То, что первобытные люди сначала знали только “один”, “два” и “много”, подтверждается тем, что в некоторых языках, например в греческом, существуют три грамматические формы: единственного числа, двойственного числа и множественного числа. Позднее человек научился делать различия между двумя и тремя деревьями и между тремя и четырьмя людьми. Счет изначально был связан с вполне конкретным набором объектов, и самые первые названия чисел были прилагательными. Например, слово “три” использовалось только в сочетаниях “три дерева” или “три человека”; представление о том, что эти множества имеют между собой нечто общее – понятие троичности – требует высокой степени абстракции. О том, что счет возник раньше появления этого уровня абстракции, свидетельствует тот факт, что слова “один” и “первый”, равно как “два” и “второй”, во многих языках не имеют между собой ничего общего, в то время как лежащие за пределами первобытного счета “один”, “два”, “много”, слова “три” и “третий”, “четыре” и “четвертый” ясно указывают на взаимосвязь между количественными и порядковыми числительными.

Названия чисел, выражающие весьма абстрактные идеи, появились, несомненно, позже, чем первые грубые символы для обозначения числа объектов в некоторой совокупности. В глубокой древности примитивные числовые записи делались в виде зарубок на палке, узлов на веревке, выложенных в ряд камешков, причем подразумевалось, что между пересчитываемыми элементами множества и символами числовой записи существует взаимно однозначное соответствие. Но для чтения таких числовых записей названия чисел непосредственно не использовались. Ныне мы с первого взгляда распознаем совокупности из двух, трех и четырех элементов; несколько труднее распознаются на взгляд наборы, состоящие из пяти, шести или семи элементов. А за этой границей установить на глаз их число практически уже невозможно, и нужен анализ либо в форме счета, либо в определенном структурировании элементов. Счет на бирках, по–видимому, был первым приемом, который использовался в подобных случаях: зарубки на бирках располагались определенными группами подобно тому, как при подсчете избирательных бюллетеней их часто группируют пачками по пять или десять штук. Очень широко был распространен счет на пальцах, и вполне возможно, что названия некоторых чисел берут свое начало именно от этого способа подсчета.

Важная особенность счета заключается в связи названий чисел с определенной схемой счета. Например, слово “двадцать три” – не просто термин, означающий вполне определенную (по числу элементов) группу объектов; это термин составной, означающий “два раза по десять и три”. Здесь отчетливо видна роль числа десять как коллективной единицы или основания; и действительно, многие считают десятками, потому что, как отметил еще Аристотель, у нас по десять пальцев на руках и на ногах. По той же причине использовались основания пять или двадцать. На очень ранних стадиях развития истории человечества за основания системы счисления принимались числа 2, 3 или 4; иногда для некоторых измерений или вычислений использовались основания 12 и 60.

Считать человек начал задолго до того, как он научился писать, поэтому не сохранилось никаких письменных документов, свидетельствовавших о тех словах, которыми в древности обозначали числа. Для кочевых племен характерны устные названия чисел, что же касается письменных, то необходимость в них появилась лишь с переходом к оседлому образу жизни, образованием земледельческих сообществ. Возникла и необходимость в системе записи чисел, и именно тогда было заложено основание для развития математики.

Основные виды чисел

В отличие от октав, седенионы S не обладают свойством альтернативности, но сохраняют свойство степенной ассоциативности .

Для представления целого положительного числа х в памяти компьютера, оно переводится в двоичную систему счисления. Полученное число в двоичной системе счисления х 2 представляет собой машинную запись соответствующего десятичного числа х 10 . Для записи отрицательных чисел используется т. н. дополнительный код числа, который получается путём прибавления единицы к инвертированному представлению модуля данного отрицательного числа в двоичной системе счисления.

Представление действительных чисел в памяти компьютера (в вычислительной технике для их обозначения используется термин число с плавающей запятой) имеет некоторые ограничения связанные с используемой системой счисления, а также, ограниченностью объёма памяти выделяемого под числа. Так, лишь некоторые из действительных чисел могут быть без потерь в точности представлены в памяти компьютера. В наиболее распространённой схеме число с плавающей запятой записывается в виде блока битов часть из которых представляют собой мантиссу числа, часть - степень, а один бит выделяется для представления знака числа (в случае необходимости знаковый бит может отсутствовать).