Логарифмические уравнения по основанию. Как решать, на примерах. Решение логарифмических уравнений

Мир полон движения: движутся звезды и планеты и на нашей планете мы также видим движение всюду – течет вода в реках, ветер гонит облака и качает деревья, по дорогам едут автомобили, по рельсам – поезда, в воздухе летят самолеты. Наукой доказано движение невидимых глазом частиц – молекул, атомов. Движение является основным свойством материи и подчиняется законам Ньютона.

Закон инерции, или Первый закон Ньютона

Механическое движение характеризуется скоростью. И вот другое основное положение, которое утверждает, что движущееся тело не может само по себе изменить свою скорость. Если на движущееся тело не действуют никакие другие тела, то тело не может ни ускориться, ни замедлиться, ни изменить направление своего движения, оно будет двигаться с какой-то определенной по модулю и направлению скоростью. Только воздействие тел извне может изменить эту скорость.

Свойство тел сохранять модуль и направление своей скорости называется инерцией

Первым явление инерции объяснил Галилей. Ньютон же сформулировал «закон инерции». Формулировка его звучит следующим образом: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения, пока действия со стороны других тел не изменят этого состояния.

Рис. 1. Портрет Ньютона.

Ни один предмет сам собой не придет в движение. Стоящий в комнате стол никогда сам собой не начнет двигаться по комнате. Движущееся тело не может само собой остановиться.

Когда водитель трамвая резко тормозит, то находящиеся в вагоне пассажиры помимо воли наклоняются вперед, продолжая свое движение по инерции.

Резко трогающийся с места поезд метрополитена заставляет пассажиров отступать или откидываться назад. А на крутом повороте дороге можно вылететь из санок в сугроб.

Примеров инерции существует огромное множество. Инерционность – неотъемлемое свойство движущейся материи.

Что же может произойти в мире, если бы мгновенно исчезло свойство тел, которое мы называем инерцией. Луна упала бы на Землю, а планеты – на Солнце. Движение тела осуществлялось бы только под действием силы и прекращалось с исчезновением последней. Даже больше: исчезновение инерции означало бы исчезновение самого движения. Таким образом, инерция есть не что иное, как выражение единства материи и движения.

Рис. 2. Солнечная система.

И в природе, и в технике нет тел, на которые не действовали бы другие тела. Например, на тело, находящееся на столе, действует опора и Земля. Тело находится в покое, потому что действия опоры и Земли уравновешивают друг друга. Опускаясь на парашюте, парашютист движется равномерно и прямолинейно (V=const), несмотря на то, что на него действует Земля и воздух. Ракета вдали от звезд будет также двигаться равномерно и прямолинейно, так как на нее не будут действовать другие тела.

Движение одних тел под действием других тел подчиняется законам динамики

Галилей, исходя из многочисленных наблюдений пришел к выводу, что если действия нет или все действия скомпенсированы (равнодействующая всех сил равна 0; R=0), то тело покоится или движется равномерно и прямолинейно (V=const; a=0).

Но движение тела необходимо рассматривать относительно других тел, иначе невозможно будет определить положение тела в пространстве. Значит, говоря о явлении инерции, необходимо указать, относительно чего тело покоится или движется равномерно и прямолинейно.

Поэтому первый закон Ньютона, названный законом инерции, также носит следующее определение:

Существуют системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если действие на него других тел скомпенсировано.

Формулы первого закона Ньютона не существует.

Инерциальные системы отсчета

Системы отсчета, которые упоминаются в первом законе Ньютона, называются инерциальными системами отсчета (ИСО).

Какие же системы отсчета можно отнести к инерциальным?

  • те, в которых при R=0; V=const
  • те, которые движутся относительно ИСО равномерно и прямолинейно (например, звезды). На самом деле не существует такой ситуации, при которой на тело не действовали другие тела. Однако, если действие одних тел скомпенсировано, а действие других слишком мало, то принято считать, что в определенном приближении на тело никакие тела не действуют.

Рис. 3. Инерциальные и неинерциальные системы отсчета.

Солнце и Земля не являются инерциальными системами отсчета. Но эффекты, вызванные их неинерцианальностью, незначительны. в ряде случаев ими можно пренебречь, правда не всегда

Первый закон Ньютона выполняется не во всех СО, а только в инерциальных. Во всех ИСО при первоначальных одинаковых условиях механические явления протекают одинаково, то есть подчиняются одинаковым законам. Это утверждение носит название – принцип относительности Галилея.

Все ИСО равноправны:

Никакими механическими опытами, проведенными в пределах данной системы, нельзя установить, находится ли она в состоянии покоя или в состоянии равномерного и прямолинейного движения.

Что мы узнали?

В данной статье кратко и понятно объясняется первый закон Ньютона, инерциальные системы отсчета и их взаимосвязь. Ведь, как известно, первый закон Ньютона действителен только для инерциальных систем отсчета.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 180.

На этом уроке мы изучим третий закон Ньютона, в котором описываются силы взаимодействия двух тел. Также вспомним основные сведения о первом и втором законе Ньютона. Помимо этого, мы вспомним основной экспериментальный закон динамики, рассмотрим принцип относительности Галилея. В конце урока узнаем, как применять третий закон Ньютона при разборе качественных задач.

Известно, что при взаимодействии оба тела воздействуют друг на друга. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы.

Проведем эксперимент. Возьмем два динамометра (рис. 1). Один из них наденем колечком на что-то неподвижное, например на гвоздь в стене, а второй соединим с первым крючками. Потянем за колечко второго динамометра. Оба прибора покажут одинаковые по модулю силы натяжения.

Рис. 1. Опыт с динамометрами

Другой пример. Представьте, что вы и ваш друг катаетесь на скейте, причем друг катается на одном скейте с братом (рис. 2).

Рис. 2. Приобретение ускорения при взаимодействии

Ваша масса - , масса друга с братом - . Если вы отталкиваетесь друг от друга, то приобретаете ускорения, которые направлены по одной прямой в противоположные стороны . Отношение масс участников этого процесса обратно пропорционально отношению модулю ускорений.

Следовательно:

Согласно второму закону Ньютона:

Сила, с которой на вас действует друг с братом

Сила, с которой вы действуете на друга с братом

Так как ускорения противонаправленные, то:

Данное равенство выражает третий закон Ньютона : тела действуют друг на друга с силами, которые имеют одинаковые модули и противоположные направления (рис. 3).

Рис. 3. Третий закон Ньютона

Основной экспериментальный закон динамики

При выводе третьего закона Ньютона мы видели, что при взаимодействии двух тел отношение двух ускорений, которые приобретает первое и второе тело, является величиной постоянной. Причем отношение этих ускорений не зависит от характера взаимодействия (рис. 4), следовательно, оно определяется самими телами, какой-то его характеристикой.

Рис. 4. Отношение ускорений не зависит от характера взаимодействия

Такая характеристика называется инертностью . Мерой инертности является масса. Поэтому отношение ускорений, приобретаемых телами в результате взаимодействия друг с другом, равно обратному отношению масс этих тел. Этот факт иллюстрирует эксперимент, в котором две тележки с разными массами () отталкиваются друг от друга с помощью упругой пластинки (рис. 5). В результате такого взаимодействия большее ускорение приобретет тележка с меньшей массой.

Рис. 5. Взаимодействие двух тел с разными массами

Рис. 6. Основной экспериментальный закон динамики

Закон, который описывает соотношение масс тел и ускорений, приобретенных в результате взаимодействия, называется основным экспериментальным законом динамики (рис. 6).

Более простая формулировка третьего закона Ньютона звучит так: сила действия равна силе противодействия.

Сила действия и сила противодействия - это всегда силы одной природы. Например, в предыдущем опыте сила действия первого динамометра на второй и сила действия второго динамометра на первый - это силы упругости; силы действия одного заряженного тела на другое и наоборот - это силы электрической природы.

Каждая из сил взаимодействия приложена к разным телам. Следовательно, силы взаимодействия между телами не могут компенсировать друг друга, хотя формально:

Рис. 7. Парадокс равнодействующей силы

Продемонстрируем опыт, который подтверждает третий закон Ньютона. До начала опыта весы находятся в равновесии: силы, действующие слева, равны всем силам, действующим справа (рис. 8).

Рис. 8. Силы, действующие слева, равны всем силам, действующим справа

Поместим грузик в сосуд с водой, не касаясь его стенок и дна. На грузик со стороны воды действует выталкивающая сила, направленная вертикально вверх. Но, по третьему закону Ньютона, силы обязательно возникают парами. Значит, со стороны грузика на воду начнет действовать равная по модулю силе Архимеда, но противоположно направленная сила, которая «толкнет» сосуд вниз. А значит, равновесие нарушится в сторону сосуда с грузиком (рис. 9).

Рис. 9. Равновесие нарушится в сторону сосуда с грузиком

Таким образом, первый закон Ньютона утверждает: если на тело не действует посторонние тела, то оно находится в состоянии покоя или равномерного прямолинейного движения относительно инерциальных систем отсчета. Из него следует, что причиной изменения скорости тела является сила. Второй закон Ньютона объясняет, как движется тело под действием силы. Он устанавливает количественное отношение между ускорением и силой.

В первом и во втором законах Ньютона рассматривается только одно тело. В третьем законе рассматривается взаимодействие двух тел с силами, одинаковыми по модулю и противоположными по направлению. Эти силы называют силами взаимодействия. Они направлены вдоль одной прямой и приложены к разным телам.

Некоторые особенности взаимодействия тел. Принцип относительности Галилея

Выводы, которые возникают при рассмотрении законов Ньютона:

1. Все силы в природе всегда возникают парами (рис. 10). Если появилась одна сила, то обязательно появится противоположно направленная ей вторая сила, действующая со стороны первого тела на второе. Обе эти силы одной природы.

Рис. 10. Все силы в природе всегда возникают парами

2. Каждая из сил взаимодействия приложена к разным телам, следовательно, силы взаимодействия между телами не могут компенсировать друг друга.

3. Ускорения тел в разных инерциальных системах отсчета одинаковы. Меняются перемещения, скорости, но ускорения - нет. Масса тел тоже не зависит от выбора системы отсчета, а значит, и сила не будет зависеть от этого. То есть в инерциальных системах отсчета все законы механического движения одинаковы - это и есть принцип относительности Галилея .

Разбор качественной задачи

1. Может ли человек поднять сам себя по веревке, перекинутой через блок, если второй конец веревки привязан к поясу человека, а блок неподвижен?

Рис. 11. Иллюстрация к задаче

С первого взгляда, кажется, что сила, с которой человек действует на веревку, равна силе, с которой веревка действует на человека (рис. 11). Но сила приложена через веревку к блоку, а сила - к человеку, следовательно, человек сможет поднять себя по этой веревке. Такая система не замкнутая. Система «человек - веревка» включает в себя блок.

2. Может ли человек толкать лодку, если он сам находится в этой лодке и упирается руками в один из бортов?

Рис. 12. Иллюстрация к задаче

В этой задаче система «человек - лодка» замкнутая (рис. 12), то есть сила, с которой человек давит на борт лодки, равна силе, с которой борт лодки действует на человека, но направлена в противоположную сторону. Никакого движения не будет.

3. Может ли человек вытащить самого себя из болота за волосы?

Рис. 13. Иллюстрация к задаче

Система также замкнутая. Сила, с которой рука действует на волосы, равна силе, с которой волосы действуют на руку, но направлена в противоположную сторону (рис. 14). Человек вытащить самого себя из болота за волосы не может.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «raal100.narod.ru» ()
  2. Интернет-портал «physics.ru» ()
  3. Интернет-портал «bambookes.ru» ()
  4. Интернет-портал «bourabai.kz» ()

Домашнее задание

  1. Вопросы в конце параграфа 26 (стр. 70) - Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Третий закон Ньютона самим Ньютоном был сформулирован так: «Действию всегда есть равное и противоположное противодействие». Есть ли физическое различие между действием и противодействием? Что собой представляют «действие» и «противодействие» Ньютона?
  3. Верно ли утверждение: скорость тела определяется действующей на него силой?
  4. О ветровое стекло движущегося автомобиля ударился комар. Сравните силы, действующие на комара и автомобиль во время удара.

Три закона сэра Исаака Ньютона описывают движение массивных тел и как они взаимодействуют.

В то время как законы Ньютона могут показаться очевидными для нас сегодня, более трех веков назад они считались революционными.

Содержание:

Ньютон, пожалуй, наиболее известен своей работой по изучению гравитации и движения планет. Призванный астрономом Эдмондом Галлеем после признания того, что за несколько лет до этого он потерял доказательство эллиптических орбит, Ньютон опубликовал свои законы в 1687 году в своей оригинальной работе «Philosophiæ Naturalis Principia Mathematica» (Математические принципы естественной философии), в которой он формализовал описание того, как массивные тела движутся под воздействием внешних сил.

Формулируя свои три закона, Ньютон упростил обращение к массивным телам, считая их математическими точками без размера или вращения. Это позволило ему игнорировать такие факторы, как трение, сопротивление воздуха, температура, свойства материала и т. д. и сосредоточиться на явлениях, которые могут быть описаны исключительно по массе, длине и времени. Следовательно, три закона не могут быть использованы для описания точности поведения больших жестких или деформируемых объектов. Однако во многих случаях они обеспечивают подходящие точные приближения.

Законы Ньютона

Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета, иногда называемой ньютоновской системой отсчета, хотя сам Ньютон никогда не описывал такую ​​систему. Инерциальную систему отсчета можно описать как трехмерную систему координат, которая либо стационарна, либо равномерно линейна, т. е. Не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета может быть описано тремя простыми законами.

Первый закон движения Ньютона

Гласит: Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения. Это просто означает, что вещи не могут начинать, останавливать или изменять направление самостоятельно.

Требуется сила, действующая на них извне, чтобы вызвать такое изменение. Это свойство массивных тел сопротивляться изменениям в их движении иногда называют инерцией.

В современной физике первый закон Ньютона принято формулировать в следующем виде:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

Второй закон движения Ньютона

Описывает, что происходит с массивным телом, когда на него воздействует внешняя сила. В нем говорится: Сила, действующая на объект, равна массе этого объекта своего ускорения. Это написано в математической форме как F = ma, где F — сила, m — масса, a — ускорение. Жирные буквы указывают, что сила и ускорение являются векторными величинами, что означает, что они имеют как величину, так и направление. Сила может быть одной силой, или это может быть векторная сумма более чем одной силы, которая является чистой силой после объединения всех сил.

Когда постоянная сила действует на массивное тело, она заставляет ее ускоряться, т. е. Изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы. Однако, если объект уже находится в движении или если эта ситуация просматривается из движущейся системы отсчета, это тело может показаться ускоряющимся, замедляющим или изменяющим направление в зависимости от направления силы и направлений, в которых объект и система отсчета перемещается относительно друг друга.

В современной физике второй закон Ньютона принято формулировать в следующем виде:

В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

Третий закон движения Ньютона

Гласит: Для каждого действия существует равное противодействие. Этот закон описывает то, что происходит с телом, когда оно оказывает силу на другое тело. Силы всегда встречаются парами, поэтому, когда одно тело толкает другого, второе тело отталкивается так же сильно. Например, когда вы нажимаете тележку, тележка отталкивается от вас; когда вы тянете за веревку, веревка откидывается на вас; когда сила тяжести тянет вас к земле, земля подталкивает вас и когда ракета воспламеняет свое топливо за ним, расширяющийся выхлопной газ толкается на ракете, заставляя его ускоряться.

Если один объект намного, гораздо более массивный, чем другой, особенно в случае привязки первого объекта к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта можно безопасно игнорировать, Например, если вы бросили мяч на запад, вам не нужно было бы считать, что вы на самом деле заставили вращаться Землю быстрее, пока мяч находился в воздухе. Однако, если вы стоите на роликовых коньках, и вы бросили мяч для боулинга, вы начнете двигаться назад с заметной скоростью.

В современной физике третий закон Ньютона принято формулировать в следующем виде:

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Три закона были проверены бесчисленными экспериментами за последние три столетия, и до сих пор они широко используются для описания видов предметов и скоростей, с которыми мы сталкиваемся в повседневной жизни. Они составляют основу того, что сейчас известно как классическая механика, а именно изучение массивных объектов, которые больше, чем очень мелкие масштабы, рассматриваемые квантовой механикой, и которые движутся медленнее, чем очень высокие скорости, релятивистские механики.

В школьном курсе физики изучаются три закона Ньютона, являющиеся основой классической механики. Сегодня с ними знаком каждый школьник, но во времена великого ученого подобные открытия считались революционными. Законы Ньютона, кратко и понятно будут описаны ниже, они помогают не только понять основу механики и взаимодействия объектов, но и помогают записать данные в качестве уравнения.

Впервые три закона Иссак Ньютон описал в труде «Математические начала натуральной философии» (1867 год), в котором были подробно изложены не только собственные выводы ученого, но все знания по этой теме открытые другими философами и математиками. Таким образом, труд стал фундаментальным в истории механики, а позднее и физики. В нем рассмотрены перемещение и взаимодействие массивных тел.

Интересно знать! Исаак Ньютон был не только талантливым физиком, математиком и астрономом, но и считался гением в механике. Занимал должность президента королевского общества Лондона.

Каждое утверждение освещает одну из сфер взаимодействия и перемещения предметов в природе, правда обращение к ним было несколько упразднено Ньютоном, и они были приняты как точки без определенного размера (математические).

Именно это упрощение позволило проигнорировать естественные физические явления: воздушное сопротивление, трение, температуру или другие физические показатели объекта.

Полученные данные могли быть описаны только по времени, массе или длине. Именно из-за этого формулировки Ньютона обеспечивают лишь подходящие, но приближенные значения, которые нельзя использовать для описания точной реакции крупных или изменяемых по форме объектов.

Перемещение массивных предметов, которые участвуют в определениях, принято исчислять в инерциальной , представленной в виде системы координат из трех измерений, и при этом она не увеличивает свою скорость и не оборачивается вокруг своей оси.

Ее часто называют системой отсчета Ньютона, но при этом ученый никогда не создавал и не использовал подобной системы, а использовал нерациональную. Именно в этой системе тела могут двигаться так, как описывает это Ньютон.

Первый закон

Называется законом инерции. Не существует его практической формулы, зато есть несколько формулировок. В учебниках по физике предлагается следующая формулировка первого закона Ньютона: есть инерциальные системы отсчета, в отношении которых объект, если он свободен от воздействия любых сил (или же они моментально компенсируется), находиться в полном покое или же двигается по прямой и с одинаковой скоростью. Что означает данное определение и как его понять?

Простыми словами первый закон Ньютона объясняется так: любое тело, если его не трогать и никоим образом не воздействовать на него, будет оставаться постоянно в состоянии покоя, то есть бесконечно стоять на месте. То же самое происходит и при его движении: оно будет равномерно двигаться по заданной траектории бесконечно, пока на него не воздействует что-либо.

Подобное утверждение озвучивал Галилео Галилей, но не смог уточнить и точно описать это явление. В этой формулировке важно правильно понять, что такое инерциальные системы отсчета. Если сказать совсем простыми словами, то это система, в которой выполняется действие данного определения.

В мире можно увидеть огромное множество подобных систем, если понаблюдать за движением:

  • поезда на заданном участке с одинаковой скоростью;
  • Луны вокруг Земли;
  • колеса обозрения в парке.

В качестве примера рассмотрим некоего парашютиста, который уже раскрыл парашют и движется прямолинейно и при этом равномерно по отношению к поверхности Земли. Движение человека не прекратиться до тех пор, пока земное притяжение будет компенсироваться движением и сопротивлением воздуха. Как только это сопротивление уменьшится, то притяжение увеличится, что приведет к изменению скорости парашютиста – его движение станет прямолинейным и равноускоренным.

Именно в отношении этой формулировки существует яблочная легенда: Исаак отдыхал в саду под яблоней и размышлял о физических явлениях, когда с дерева сорвалось спелое яблоко и упало в траву. Именно ровное падение заставило ученого изучить этот вопрос и выдать в итоге научное объяснение движению предмета в некой системе отсчета.

Интересно знать! Помимо трех явлений в механике, Исаак Ньютон также объяснил движение Луны как спутника Земли, создал корпускулярную теорию света и разложил радугу на 7 цветов.

Второй закон

Данное научное обоснование касается не просто движения предметов в пространстве, а взаимодействия их с другими объектами и результатов этого процесса.

Закон гласит: увеличение скорости объекта с некоторой постоянной массой в инерциальной системе отсчета прямо пропорционально силе воздействия и обратно пропорционально постоянной массе движущегося предмета.

Проще говоря, если существует некое движущиеся тело, масса которого не изменяется, и на него вдруг начнет воздействовать посторонняя сила, то оно начнет ускоряться. А вот скорость ускорения будет прямо зависеть от воздействия и обратно пропорционально зависеть от массы движущегося предмета.

Для примера можно рассмотреть снеговой шар, который катиться с горы. Если шар толкать по ходу движения, то ускорения шара будет зависеть от мощности воздействия: чем она больше, тем больше ускорение. Но, чем больше масса данного шара, тем меньше будет ускорение. Данное явление описывается формулой, в которой учитывается ускорение, или «a», равнодействующая масса всех воздействующих сил, или «F», а также масса самого предмета, или «m»:

Следует уточнить, что данная формула может существовать только в том случае, если равнодействующая всех сил не меньше и не равна нулю. Применяется закон только относительно тел, которые двигаются со скоростью меньше световой.

Полезное видео: первый и второй законы Ньютона

Третий закон

Многие слышали выражение: «На каждое действие есть свое противодействие». Его часто используют не только в общеобразовательных целях, но и воспитательных, объясняя, что на каждую силу найдется большая.

Эта формулировка пошла от очередного научного утверждения Исаака Ньютона, а точнее его третьего закона, который объясняет взаимодействие различных сил в природе относительно какого-либо тела.

Третий закон Ньютона определение имеет такое: предметы оказывают воздействие друг на друга с силами одинаковой природы (соединяющей массы предметов и направлены вдоль прямой), которые равны по своим модулям и при этом направлены в разные стороны. Данная формулировка звучит достаточно сложно, но простыми словами объяснить закон легко: каждая сила имеет свое противодействие или равную силу, направленную в обратную сторону.

Гораздо проще будет понять смысл закона, если в качестве примера взять пушку, из которой стреляют ядрами. Пушка воздействует на снаряд с той же силой, с которой снаряд воздействует на пушку. Подтверждением этого будет небольшое движение пушки назад во время выстрела, что подтвердит воздействие ядра на орудие. Если взять как пример тоже самое яблоко, которое падает на землю, то станет понятно, что яблоко и земля воздействуют друг на друга с равной силой.

Закон имеет также математическое определение, в котором используется сила первого тела (F1) и второго (F2):

Знак минуса сообщает о том, что векторы сил двух разных тел направлены в противоположные стороны. При этом важно помнить, что данные силы не компенсируют друг друга, поскольку направлены относительно двух тел, а не одного.

Полезное видео: 3 закона Ньютона на примере велосипеда

Вывод

Данные законы Ньютона кратко и четко необходимо знать каждому взрослому человеку, поскольку они являются основой механики и действуют в повседневной жизни, несмотря на то, что не при всех условиях данные закономерности соблюдаются. Они стали аксиомами в классической механике, и на основе их были созданы уравнения движения и энергии (сохранение импульса и сохранение механической энергии).

Вконтакте

Первый закон Ньютона (или закон инерции ) из всего многообразия систем отсчета выделяет класс так называемых инерциальных систем .

Проведем наблюдения за поведением различных тел относительно Земли, выбрав неподвижную систему отсчета, связанную с поверхностью Земли. Мы обнаружим, что скорость любого тела изменяется только под действием других тел. Например, пусть тело стоит на неподвижной тележке. Толкнем тележку - и тело опрокинется против движения. Если же, наоборот, резко остановить двигающуюся тележку с телом, оно опрокинется по направлению движения.

Очевидно, что если бы трение между тележкой и телом отсутствовало, то тело не опрокинулось бы. В первом случае произошло бы следующее: так как скорость стоящего тела равна нулю, а скорость тележки стала увеличиваться, тележка выскользнула бы из-под неподвижного тела вперед. Во втором случае при торможении тележки стоящее на ней тело сохранило бы свою скорость движения и соскользнуло вперед с остановившейся тележки.

Другой пример. Металлический шарик скатывается по наклонному желобу на горизонтальную плоскость с одной и той же высоты h , следовательно, его скорость в точке, в которой он начинает горизонтальное движение, всегда одинакова. Пусть вначале горизонтальная поверхность посыпана песком. Шарик пройдет небольшое расстояние s 1 и остановится. Заменим песчаную поверхность гладкой доской. Шарик пройдет до остановки уже значительно большее расстояние s 2 . Заменим доску льдом. Шарик будет катиться очень долго и пройдет до остановки расстояние s 3 >> s 2 . Эта последовательность опытов показывает, что если уменьшать влияние окружающей среды на движущееся тело, его горизонтальное движение относительно Земли неограниченно приближается к равномерному и прямолинейному. (При движении тела по горизонтальной поверхности притяжение этого тела Землей компенсируется упругостью опоры - доски, льда и т. д.)

О том, что телу свойственно сохранять не любое движение, а именно прямолинейное, свидетельствует, например, следующий опыт. Шарик, двигавшийся прямолинейно по плоской горизонтальной поверхности, сталкиваясь с преградой, имеющей криволинейную форму, под действием этой преграды вынужден двигаться по дуге. Однако когда шарик доходит до края преграды, он перестает двигаться криволинейно и вновь начинает двигаться по прямой. Обобщая результаты упомянутых (и аналогичных им) наблюдений, можно сделать вывод, что если на данное тело не действуют другие тела или их действия взаимно компенсируются, это тело покоится или же скорость его движения остается неизменной относительно системы отсчета, неподвижно связанной с поверхностью Земли.

Явление сохранения телом состояния покоя или прямолинейного равномерного движения при отсутствии или компенсации внешних воздействий на это тело называют инерцией .

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Как мы уже сказали, свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией . Поэтому первый закон Ньютона называют законом инерции .

Формулировке первого закона можно придать следующий вид: скорость любого тела остаётся постоянной (в частности, равной нулю), пока воздействие на это тело со стороны других тел не вызовет её изменения.

Сущность первого закона Ньютона может быть сведена к трём основным положениям:

  1. все тела обладают свойствами инерции;
  2. существуют инерциальные системы отсчёта, в которых выполняется первый закон Ньютона;
  3. движение относительно. Если тело А движется относительно тела отсчета В со скоростью υ, то и тело В , в свою очередь, движется относительно тела А с той же скоростью, но в обратном направлении υ = – υ".

Впервые закон инерции был сформулирован Г. Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

При описании движения тел вблизи поверхности Земли системы отсчета, связанные с Землей, приближенно можно считать инерциальными. Однако, при повышении точности экспериментов, обнаруживаются отклонения от закона инерции, обусловленные вращением Земли вокруг своей оси.

Примером тонкого механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко . Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко относительно Земли оставалась бы неизменной. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки

Более подробно о знаменитом маятнике Фуко в этом видео:

В качестве примера выполнения Первого Закона Ньютона можно рассмотреть движение парашютиста. Он равномерно приближается к земле, когда действие силы тяжести компенсируется силой натяжения строп парашюта, которая в свою очередь обусловлена сопротивлением воздуха.

Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему , у которой начало координат связано с Солнцем, а оси направлены на определенные "неподвижные" звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т. е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными. Инерциальными являются и системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета (см. далее). Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея или механического принципа относительности. Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности.

Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна , математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).

Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальными . К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.