Равноугольная коническая проекция на секущем конусе. Летательные аппараты - Авиационный моделизм и самолетовождение Коническая проекция

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33). В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.


В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.




Рис. 34


Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции P N под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.


Рис. 35


Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З. (см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре. Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность -ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций. Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей. Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Из рассмотренных выше проекций в судовождении в основном применяются: равноугольная, цилиндрическая, азимутальная перспективная, гномоническая и азимутальная перспективная стереографическая.

Масштабы

Масштабом карты называется отношение бесконечно малого элемента линии в данной точке и по данному направлению на карте к соответствующему бесконечно малому элементу линии на местности.

Этот масштаб называется частным масштабом, и каждая точка карты имеет свой, присущий только ей, частный масштаб. На картах, кроме частного, различают еще главный масштаб, являющийся исходной величиной для расчетов размеров карты.

Главным называется масштаб, величина которого сохраняется лишь по определенным линиям и направлениям, в зависимости от характера построения карты. На всех остальных частях одной и той же карты величина масштаба больше или меньше главного, т. е. этим частям карты будут соответствовать свои частные масштабы.

Отношение частного масштаба карты в данной точке по данному направлению к главному называется увеличением масштаба , а разность между увеличением масштаба и единицей - относительным искажением длины. На равноугольной цилиндрической проекции масштаб изменяется при переходе с одной параллели на другую. Параллель, по которой соблюден главный масштаб, называется главной параллелью. По мере удаления от главной параллели в сторону полюса величины частных масштабов на одной и той же карте увеличиваются и, наоборот, по мере удаления от главной параллели в сторону экватора величины частных масштабов уменьшаются.

Если масштаб выражается в виде простой дроби (или отношения), делимое которой - единица, а делитель - число, указывающее, скольким единицам длины на горизонтальной проекции данного участка земной поверхности соответствует одна единица длины на карте, то такой масштаб называется численным или числовым. Например, числовой масштаб 1/100000 (1:100000) означает, что 1 см на карте соответствует 100 000 см на местности.

Для определения длины измеряемых линий пользуются линейным масштабом, показывающим, сколько единиц длины высшего наименования на местности содержится в одной единице длины низшего наименования на карте (плане).

Например, масштаб карты «5 миль в I см» или 10 км в 1 см» и т. п. Это значит, что расстояние в 5 миль (или 10 км) на местности соответствует 1 см на карте (плане).

Линейный масштаб на плане или карте помещают под рамкой в виде прямой, разделенной на несколько делений; начальную точку линейного масштаба обозначают цифрой 0, а затем против каждого или некоторых последующих его делений ставят цифры, показывающие соответствующие этим делениям расстояния на местности.

Переход от числового масштаба к линейному осуществляется простым пересчетом мер длины.

Например, чтобы перейти от числового масштаба 1/100000 к линейному, нужно 100 000 см перевести в километры или мили. 100 000 см = 1 км, или, приближенно, 0,54 мили, следовательно, данная карта составлена в масштабе 1 км в 1 см, или 0,54 мили в 1 см.

Если известен линейный масштаб, например 2 мили в 1 см, то для перехода к числовому необходимо 2 мили перевести в сантиметры и сделать запись в виде дроби с числителем единица: 2 1852 100 - = 370 400 см, следовательно, числовой масштаб данной карты 1/370400

»
На ведение визуальной ориентировки оказывают влияние: 1. Характер пролетаемой местности. Это условие имеет первостепенное значение при определении возможности и удобства ведения визуальной ориентировки. В районах, насыщен­ных крупными и характерными ориентирами, вести визуальную ориентировку легче, чем в районах с однообразными ориентирами. При полете над безориентирной местностью или над...

»
Самое сложное для авиамоделиста-кордовика — научиться управлять моделью ие кистью, а всей рукой, сгибая ее лишь в локтевом или даже только в плечевом суставе. Чтобы быстрее ос­воить этот прием, применяют ручку управления, которая фиксируется на предплечье не­большим хомутом (рис. 67).

»
Указатель пилота предназначен только для отсчета КУР по шкале против стрелки указателя. Шкала оцифрована через 30°, цена одного деления раина 5°. Указатель штурмана предназначен для отсчета КУР и пелен­гов радиостанции и самолета. Для отсчета КУР необходимо: 1) ручкой с надписью КУРС подвести нуль шкалы против не­подвижного треугольного индекса; 2) отсчитать значение КУР по шкале против остро...

»
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

»
Азимут и дальность до самолета опре­деляются диспетчером по экрану индика­тора, на котором самолет изображается в виде ярко светящейся метки. Азимут от­считывается относительно северного на­правления истинного меридиана по шка­ле индикатора, которая имеет оцифровку от 0 до 360°. Наклонная дальность до самолета определяется на индикаторе по масштабным кольцам (рис. 16.1). Точность определения даль...

»
Предполетная штурманская подготовка организуется и про­водится командиром корабля перед каждым полетом с учетом конкретной навигационной обстановки и метеорологических ус­ловий, складывающихся непосредственно перед вылетом. В этот период каждый член экипажа выполняет по своей специально­сти перечень обязательных действий в соответствии с Инструк­цией по организации и технологии предполетной подгот...

»
Сборные таблицы предназначены для подбора нужных листов карт и быстрого определения их номенклатуры. Они представляют собой схематическую карту мелкого масштаба с обозначенной на ней разграфкой и номенклатурой листов карт одного, а иногда двух-трех масштабов. Для облегчения выбора нужных листов карт на сборных таблицах указаны названия крупных городов. Сборные таблицы издаются на отдельных листах. ...

»
Режимы «Снос» и «Снос точно» предназначены для определе­ния угла сноса самолета. Первый используется при полетах до вы­соты 5000 м, а второй — при полетах на высотах от 5000 м и бо­лее. Измерение угла сноса основано на использовании эффекта Доп­лера, сущность которого заключается в том, что при перемещении источника излучения радиосигналов (передатчика) относительно приемника или приемника о...

»
В гражданской авиации при полетах по трассам в качестве ИПМ берется аэродром вылета. В отдельных случаях при внетрассовых полетах ИПМ может быть ориентир, расположенный на не­котором расстоянии от аэродрома вылета. Полет по заданному маршруту начинается от ИПМ. Поэтому, прежде всего, необходимо обеспечить точный выход на него. Ма­невр выхода на ИПМ намечается с таким расчетом, чтобы самолет прошел...

»
Одноступенчатая модель ракеты (рис. 58). Корпус клеят из двух слоев чертежной бу­маги на оправке диаметром 20 мм. Размер бумажной за­готовки 300X275 мм. Оправ­кой может служить круглый стержень из металла или дру­гого материала нужного диа­метра. Дав просохнуть бумаге, шов зачищают шлифовальной шкуркой и покрывают жидким нитролаком.

»
Са­мые простые соревнования — на время полета. Тут может быть и одновременный старт всех шаров и старт по очереди (по жребию). Выигрывает та команда, у которой шар доль­ше продержится в воздухе.

»
Модели воздушного боя, или как их часто называют «бойцовки», несомненно, держат первенство среди всех кор­довых летательных аппара­тов. Обилие всевозможных схем и конструкторских ре­шений — наглядное подтверж­дение сказанному. Знакомство с этим классом авиационных моделей начнем с несложной «бойцовки», разработанной в пионерском лагере «Родник», где много лет автор был руководителем авиакр...

»
Современные самолеты с ГТД, применяемые в ГА, рассчитаны на экономичную эксплуатацию на больших высотах и больших скоростях полета. Самолетовождение высотно-скоростных самоле­тов имеет целый ряд особенностей, которые необходимо учитывать как; при подготовке к полету, так и в процессе самого полета. Самолетовождение на больших высотах (от 6000 м и выше) имеет следующие особенности:

»
Для ведения контроля пути нужно знать фактическую путевую скорость и угол сноса. При отсутствии на самолете навигацион­ных средств для автоматического измерения этих элементов послед­ние могут быть определены на контрольном этапе. Длина контроль­ного этапа берется не менее 50—70 км. Его входной и выходной ориентиры выбираются с учетом надежности их опознавания с вы­соты полета. На контрольно...

»
При полете по ортодромии для контроля пути по направлению используются ортодромические радиопеленги, которые могут быть отсчитаны по УШ или получены путем расчетов. При полете по ортодромии от радиостанции контроль пути по направлению ведется сравнением ОМПС с ОЗМПУ (рис. 23.10).

»
Заданный путевой угол мо­жет быть истинным и магнит­ным в зависимости от меридиа­на, от которого он отсчитывает­ся (рис. 3.7). Заданным магнитным путевым углом ЗМПУ называется угол, заключенный между северным направлением магнитного меридиана и линией заданного пути. ЗМПУ отсчиты­вается от северного направления магнитного меридиана до ЛЗП по ходу часовой стрелки от 0 до 360° и...

»
Автожир, если он соответствующим образом сбалансирован, может совершать крутые планирующие спуски при больших углах атаки, так как для него, в отличие от самолета, не существует критического угла, при котором начинаются срыв струй на крыле и резкое уменьшение подъемной силы, и нет опасности штопора при потере скорости.

»
В процессе выполнения полета штурман выполняет различные навигационные расчеты и измерения. Так как запомнить результа­ты всех расчетов и измерений невозможно, штурман записывает их в бортовом журнале, а некоторые отмечает на карте. В бортовом журнале и на карте рекомендуется четко и быстро записывать только те данные, которые нужны для определения на­вигационных элементов полета, контроля и испра...

»
Удачное развитие конструкции автожира повело к теоретическим изысканиям по несущему авторотирующему винту-ротору. Так, например, в 1926 г. появилась работа Пистолези. В 1927 г. была опубликована Глауэртом теория автожира. В 1928 г. ее развил и дополнил Локк. Можно также указать на несколько работ итальянских аэродинамиков (Ферарри, Цистолези, Уго-де-Кариа), относящихся к работе винта в боковом пот...

»
Кодовые выражения ЩГЕ и ЩТФ используются при запросе места самолета у радиопеленгаторного узла или радиопеленгатора, работающего совместно с наземным радиолокатором. ЩГЕ (в телеграфном режиме) .означает: «Сообщите истинный пеленг самолета (ИПС) и расстояние (S) от радиопеленгатора до самолета». Для получения МС штурман прокладывает на борто­вой карте от радиопеленгатора ИПС, а на линии пеленга &md ...

»
Радиодевиация компенсируется в следующем порядке: 1. Выключить радиокомпас и отсоединить компенсатор от бло­ка рамки. 2. Снять скобу с указателя радиодевиаций.

»
Плавность в работе ротора на всех полетных режимах автожира является необходимым требованием, так как неровности и тряска, передаваясь на остальные части машины, будут влиять на прочность конструкции, регулировку ротора и других деталей. За неимением достаточного эксплуатационного опыта придется пока ограничиться предварительными соображениями об условиях плавной работы ротора. Во-первых, ротор до...

»
Видоизмененная поликоническая проекция была принята на международной геофизической конференции в Лондоне в 1909 г. и получила название международной. В этой проекции из­дается международная карта масштаба 1: 1 000 000. Строится она по особому закону, принятому международным соглашением.

»
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

»
Обеспечение безопасности полета является одной из главных задач самолетовождения. Она решается как экипажем, так и службой движения, которые обязаны добиваться безопасно­сти полета каждого самолета даже в тех случаях, когда приня­тые для этого меры повлекут за собой нарушение регулярности или снижение экономических показателей полета.

»
Одним из основных правил самолетовождения является непре­рывное сохранение ориентировки в течение всего полета. Сохра­нять ориентировку — это значит в любое время полета знать ме­сто самолета. Местом самолета называется проекция положения самолета в данный момент времени на земную поверхность. Ори­ентировка может осуществляться визуально и при помощи техни­ческих средств самолетовождения.

»
Несмотря на большое раз­нообразие, все ракеты имеют много общего в своем устрой­стве. Основными частями управляемой ракеты являются полезный груз, корпус, двига­тель, бортовая аппаратура си­стемы управления, органы управления и источники энер­гии. Полезный груз — объект для проведения иссле­дований или других работ, размещается в головном от­секе и прикрывается головным обтекателем. Корпус р...

»
Одним из важнейших требований безопасности самолето­вождения является предотвращение столкновений самолетов с земной поверхностью или препятствиями. Основным способом ре­шения этой задачи в настоящее время является расчет и выдер­живание в полете безопасной высоты по барометрическому высо­томеру. Безопасной высотой называется минимально допусти­мая истинная высота полета, гарантирующая самолет от...

»
В полете угол сноса может быть определен одним из следую­щих способов: 1) по известному ветру (на НЛ-10М, НРК-2, ветрочете и под­счетом в уме); 2) по отметкам места самолета на карте; 3) по радиопеленгам при полете от РНТ или на РНТ; 4) с помощью доплеровского измерителя; 5) при помощи бортового визира или самолетного радиоло­катора; 6) глазомерно (по видимому бегу визирных точек).

»
В целях достижения экономичности полеты по трассам необхо­димо выполнять на наивыгоднейших режимах. Данные о крейсер­ских режимах горизонтального полета для самолета Ан-24 для основных полетных весов приведены в табл. 24.1. Эта таблица пред­назначена для определения наивыгоднейшей скорости полета и часового расхода топлива. Ниже дается характеристика установ­ленных крейсерских режимов полета для с...

Конические проекции

Наименование параметра Значение
Тема статьи: Конические проекции
Рубрика (тематическая категория) Радио

Классификация картографических проекций

Карты и картографические проекции

Картой принято называть уменьшенное изображение земной поверхности на плоскости в определœенном масштабе с нанесением координатной сетки и условных знаков, отображающих земные объекты.

Полетная карта является основным пособием для самолетовождения. Без карты не может выполняться ни один полет.

Карта на земле необходима для прокладки и оцифровки маршрута͵ изучения базовых и запасных аэродромов, выполнения необходимых измерений и расчетов при подготовке к полету, а в полете – для ведения визуальной ориентировки, контроля пути, определœения места самолета.

Авиационная карта должна удовлетворять следующим требованиям:

1. Достоверно и точно отображать состояние местности:

2. Быть наглядной, хорошо читаемой и удобной для работы.

3. Карта должна быть с минимальными угловыми и линœейными искажениями,

удобной для измерений и графических построений.

Картографической проекцией принято называть способ изображения земной поверхности на плоскости. Все картографические проекции различаются по следующим признакам:

1. По характеру искажения;

2. По способу построения координатной сетки:

По характеру искажения проекции бывают:

1. Равноугольные – сохраняется равенство углов между ориентирами и форма фигур.
Размещено на реф.рф
Карты в равноугольной проекции широко применяются в авиации.

2. Равновеликие – сохраняется постоянство отношения площади изображения фигуры на карте к площади этой же фигуры на земной поверхности. В этой проекции нет равенства углов и подобия фигур.

3. Равнопромежуточные – масштаб сохраняется по одному из главных направлении (меридиану и параллелям).

4. Произвольные – не сохраняется ни равенство углов, ни площадей.

По способу построения координатной сетки (меридианов и параллелœей) картографические проекции делятся на цилиндрические, конические, поликонические, азимутальные.

Цилиндрические проекции (проекции Меркатора)

Для изготовления карт в цилиндрической проекции необходима модель Земли, изготовленная из прозрачного материала. В центре модели помещается источник света. Модель земли помещают в цилиндр так, чтобы она касалась экватором стенок цилиндра. Далее производят подсвет. Лучи света распространяются прямолинœейно и всœе точки и линии, имеющиеся на модели, проектируются на поверхность цилиндра. Далее цилиндр разрезается, разворачивается на плоскость. Меридианы и параллели на картах в данной проекции имеют вид взаимно – перпендикулярных линий. Проекция равноугольна, масштаб не одинаков – укрупняется к полюсам. В данной проекции изготовляются морские карты.

В конической проекции поверхность Земли проектируется на боковую поверхность конуса, касающегося к одной из параллелœей. Далее конус разрезается и разворачивается на плоскости. Меридианы в этой проекции изображаются в виде прямых линий, сходящихся к полюсу, а параллели – в виде дуг, параллельных экватору. Проекция равноугольна, искажения масштаба не велико. В случае если ось конуса совпадает с осью вращения Земли, проекция принято называть нормальной. В нормальной конической проекции изготовляются бортовые карты масштаба 1: 4000000 (1см. = 40км), и 1: 2500000 (1см. = 25км).

Конические проекции - понятие и виды. Классификация и особенности категории "Конические проекции" 2017, 2018.

Конические проекции - поверхность шара (эллипсоида) проектируется на поверхность касательного или секущего конуса, после чего она как бы разрезается по образующей и разворачивается в плоскость. Как и в предыдущем случае, различают нормальную (прямую) коническую проекцию, когда ось конуса совпадает с осью вращения Земли, поперечную коническую - ось конуса лежит в плоскости экватора и косую коническую - ось конуса наклонена к плоскости экватора.

Коническими называются такие проекции, в которых параллели нормальной сетки изображаются дугами концентрических окружностей, а меридианы - их радиусами, углы между которыми на карте пропорциональны соответствующим разностям долгот в натуре.

Геометрически картографическую сетку в этих проекциях можно получить путем проектирования меридианов и параллелей на боковую поверхность конуса с последующим развертыванием этой поверхности в плоскость.

Представим себе конус, касающийся глобуса по некоторой параллели АоВоСо (рис. 4). Продолжим плоскости географических меридианов и параллелей глобуса до пересечения их с поверхностью конуса. Линии пересечения указанных плоскостей с поверхностью конуса примем соответственно за изображения меридианов и параллелей глобуса. Разрежем поверхность конуса по образующей и развернем ее в плоскость; тогда получим на плоскости картографическую сетку в одной из конических проекций (рис. 5).

Параллели с глобуса на поверхность конуса можно перенести и другими способами, а именно: путем проектирования лучами, исходящими из центра глобуса или из некоторой точки, находящейся на оси конуса, путем откладывания на меридианах проекции в обе стороны от параллели касания выпрямленных дуг меридианов глобуса, заключенных между параллелями, и последующего проведения через точки отложения концентрических окружностей из точки S (рис. 5), как из центра. В последнем случае параллели на плоскости будут расположены на таком же расстоянии друг от друга, как и на глобусе.

При указанных выше способах перенесения географической сетки с глобуса на поверхность конуса параллели на плоскости будут

Рис.4 Конус, касающийся Глобуса по параллели.

Рис. 5 Отложения концентрических окружностей.

Картографическая сетка в конической проекции изображаться дугами концентрических окружностей, а меридианы будут представлять собой прямые, исходящие из одной точки и составляющие между собой углы, пропорциональные соответствующим разностям долгот.

Свойства конических проекций Птолемея, Красовского, Каврайского

Проекция Красовского

На карте нет искажений: длин вдоль параллелей с широтами +49,4 и +67,8 градусов; площадей на параллелях с широтами +48°,2 и+68°,4; углов на параллелях с широтами +50°,6 и+66°,8. Проекция рассчитана под условиями: сохранения площади пояса, ограниченного параллелями с широтами +39°28"42" и +73°28"42"; равенства масштабов вдоль крайних параллелей этого пояса; минимума суммы квадратов искажений длин вдоль параллелей.

Проекцию следует применять для карт Российской Федерации, когда существенно, чтобы не только материковая часть, но и прилегающий к нему район полярного бассейна передавались с возможно малыми искажениями. Карта может быть скомпонована только без включения в рамку полюса, который изображается в виде полярной дуги.

Проекция Птолемея

Коническая проекция Птолемея строится на прямом касательном конусе. Представив себе пространственную картину взаимного расположения фигур, перейдем к построению сетки проекции.

1. Задаются исходные данные для построения сетки, а именно масштаб карты, расстояние в градусах между параллелями (п°) и меридианами (т°), широта параллели касания (ф0).

2. Вычисляется радиус параллели касания (в мм) по формуле

3. Вычисляется расстояние между параллелями (а - отрезок меридиана - дуги большого круга) по формуле

4. Расстояние между меридианами (b - отрезок параллели) определяется на параллели касания. Из таблиц известно значение 1° дуги данной параллели (в км), его умножают на разность долгот между соседними меридианами (т°) и переводят в миллиметры, зная масштаб данной карты.

После этих вычислений приступают к построению проекции на листе бумаги.

1. Проводят меридиан симметрии. Для России принято считать таковым меридиан 100° в. д.

2. Вычисленным радиусом из вершины конуса, взятой на меридиане симметрии произвольно, проводят параллель касания. Обычно широту выбирают так, чтобы параллель находилась посредине карты. Для России это может быть 55° с. ш.

3. По обе стороны от параллели касания на меридиане симметрии откладывают отрезки - расстояния между параллелями. Сами дуги параллелей проводят из вершины конуса.

4. На параллели касания (не имеющей искажений на карте) откладывают отрезки b - расстояния между меридианами.

Внутренней рамкой ограничивают картографическое изображение территории России или другой страны, затем строят градусную рамку, внешнюю рамку, и построение картографической сетки в проекции закончено.

Свойства проекции Птолемея:

1. Главный масштаб сохраняется по всем меридианам и параллели касания.

2. Частные масштабы по другим параллелям больше главного.

3. Равноугольные и равновеликие свойства сохраняются вдоль параллели касания - линии нулевых искажений.

4 Искажения контуров, площадей возрастают по обе стороны от параллели касания. Причем в полосе 15° по обе стороны от нее они небольшие, далее к северу нарастают более значительно, чем к югу.

В 1931 г. для карт СССР была разработана нормальная коническая проекция В. В. Каврайского. Она применялась для «Атласа СССР» (7 класс), «Большого советского атласа мира». Проекция разработана Каврайским с расчетом наименьших искажений длин по меридианам и параллелям для территории СССР к югу от полярного круга. К северу от него качество изображения в расчет не принималось (рис. 60).

Проекция построена на секущем конусе и имеет две параллели касания, а именно 47° с. ш. и 62° с. ш., наибольшие искажения углов около 0,5°. В этой проекции имеются линии нулевых искажений всех видов. По всем меридианам масштаб главный, по параллелям касания также. При работе школьников или студентов с картами в этой проекции можно пользоваться транспортиром для измерения углов.


Рис. 60. Сетка в проекции Каврайского

В проекции Каврайского издана в 1949 г Гипсометрическая карта СССР в масштабе 1 2 500 000

С 50-х гг для карт СССР применяется нормальная равнопромежуточная проекция Ф Н Красовского Принцип ее построения похож на построение проекции Каврайского для расчетов использован тот же секущий конус, но введено условие сохранения площади заданного пояса и равенства масштабов длин по его крайним параллелям -39°48′ с ш и 73°30′ с ш, т е раздвинута полоса между параллелями касания, в пределах которой можно вы полнить картометрические работы, не внося поправки на искажения (Рис 61)

Недостаток нормальных конических проекций состоит в том, что на касательном конусе главный масштаб сохраняется только по параллели

касания, в остальных местах имеются искажения. На секущем конусе восточные и западные территории сильно развернуты полюс находится за пределами изображения

Чтобы сохранить масштаб на всех параллелях, необходимо градусную сетку строить с помощью множества конусов, а именно каждую параллель - на своем Тогда каждая параллель станет параллелью касания (радиус ее вычисляется по формуле Птолемея р = г ctg ф0) и изобразится без искажений Далее найти на параллелях, пользуясь таблицей длин дуг в Г, точки прохождения меридианов и провести их как сложные кривые, соединяя точки прохождения меридианов на соседних параллелях. Таков принцип строения картографической сетки в поликонических проекциях.

41. Поликонические проекции. Свойства проекций ЦНИИГАиК: вариант БСЭ, вариант 1951 г.

Поликоническая проекция ЦНИИГАиК (Вариант БСЭ) разработана для карт мира Большой Советской Энциклопедии. Искажения углов и площадей примерно одного порядка, но по характеру искажений она всё же больше тяготеет к равноугольным проекциям. При отображении Европы, Африки, значительных частей Азии, Южной и Северной Америки, Австралии и даже части Антарктиды искажения углов не превышают 20 градусов. Наибольшие искажения в углах рамки (более 50 градусов). Масштаб площадей изменяется от 0,833 (в центре проекции) до 2 (на северных окраинах материков) и до 3 и более (в полярных районах). Масштаб длин вдоль экватора равен 0,833. Нет искажений длин вдоль вдоль параллелей +-45 градусов. Отсутствуют угловые искажения на среднем меридиане в двух точках с широтами +-52,7 градусов.

Проекция используется для многих учебных, справочных настенных и настольных карт мира.

Использование результатов топографо-геодезических работ существенно упрощаются, если эти результаты отнесены к простейшей – прямоугольной системе координат на плоскости. В такой системе координат многие геодезические задачи на небольших участках местности и на картах решаются путем применения простых формул аналитической геометрии на плоскости. Закон изображения одной поверхности на другой называют проекцией. Картографические проекции основаны на формировании специфического отображения параллелей широты и меридианов долготы эллипсоида на некоторую выравниваемую или развертываемую поверхность. В геометрии, как известно, наиболее простыми развертываемыми поверхностями являются плоскость, цилиндр и конус. Это и определило три семейства картографических проекций: азимутальные, цилиндрические и конические . Независимо от выбранного типа преобразований, любое отображение криволинейной поверхности на плоскость влечет за собой ошибки и искажения. Для геодезических проекций предпочитают проекции, обеспечивающие медленное нарастание в них искажений элементов геодезических построений при постепенном увеличении площади проектируемой территории. Особенно важным является требование, чтобы в проекции обеспечивалась высокая точность и удобство учета этих искажений, причем по наиболее простым формулам. Ошибки проекционных преобразований возникают исходя из точности по четырем характеристикам:

    равноугольность – истинность формы любого объекта;

    равновеликость – равенство площадей;

    равнопромежуточность – истинность измерения расстояний;

    истинность направлений.

Ни одна из картографических проекций не может обеспечить точность отображений на плоскости по всем перечисленным характеристикам.

По характеру искажений картографические проекции подразделяются на равноугольные, равновеликие и произвольные (в частных случаях равнопромежуточные).

Равноугольными (конформными ) проекциями называют такие, в которых отсутствуют искажения углов и азимутов линейных элементов. Эти проекции сохраняют без искажений углы (например, между севером и востоком всегда угол должен быть прямым) и формы малых объектов, но в них резко деформируются длины и площади. Следует отметить, что сохранение углов для больших территорий труднодостижимо, и этого можно добиться только на небольших участках.

Равновеликими (равноплощадными) проекциями называют проекции, в которых площади соответствующих областей на поверхности эллипсоидов и на плоскости тождественно равны (пропорциональны). В этих проекциях искажены углы и формы объектов.

Произвольные проекции имеют искажения углов, площадей и длин, но эти искажения распределены по карте таким образом, что они минимальны в центральной части и возрастают на периферии. Частным случаем произвольных проекций являются равнопромежуточные (эквидистантные) , в которых искажения длин отсутствуют по одному из направлений: вдоль меридиана или вдоль параллели.

Равнопромежуточными называют проекции, сохраняющие длину по одному из главных направлений. Как правило, это проекции с ортогональной картографической сеткой. В этих случаях главными являются направления вдоль меридманов и параллелей. Соответственно определяются равнопромежуточные проекции вдоль одного из направлений. Второй способ построения таких проекций заключается в сохранении единичного масштабного коэффициента вдоль всех направлений из одной точки, либо из двух. Расстояния, измеренные из таких точек, будут точно соответствовать реальным, но для любых других точек это правило не будет действовать. В случае выбора такого вида проекции очень важен выбор точек. Обычно предпочтение отдают точкам, из которых производится наибольшее количество измерений.

а) конические

б) цилиндрические

в) азимутальные

Рисунок 11. Классы проекций по способу построения

Равноазимутальные проекции чаще всего используются в навигации, т.е. когда наибольший интерес представляет сохранение направлений. Аналогично равновеликой проекции, сохранение истинных направлений возможно лишь для одной или двух определенных точек. Прямые линии, проведенные только из этих точек, будут соответствовать истинным направлениям.

По способу построения (развертывания поверхности на плоскость) выделяют три больших класса проекций: конические (а), цилиндрические (б) и азимутальные (в).

Конические проекции образуются на основе проектирования земной поверхности на боковую поверхность конуса, определенным образом ориентированного относительно эллипсоида. В прямых конических проекциях оси земного шара и конуса совпадают, при этом выбирается секущий или касательный конус. После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. В зависимости от размеров изображаемой площади в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте: две параллели (секущие) при большом протяжении для уменьшения отклонений масштабов от единицы. Такие параллели называют стандартными. Особенностью конических проекций является то, что их центральные линии совпадают со средними параллелями. Следовательно, конические проекции удобны для изображения территорий, расположенных в средних широтах и значительно вытянутых по долготе. Именно поэтому многие карты бывшего Советского Союза составлены в этих проекциях.

Цилиндрические проекции образуются на основе проектирования земной поверхности на боковую поверхность цилиндра, определенным образом ориентированного относительно земного эллипсоида. В прямых цилиндрических проекциях параллели и меридианы изображены двумя семействами прямых параллельных линий, перпендикулярных друг другу. Таким образом, задается прямоугольная сетка цилиндрических проекций. Цилиндрические проекции можно рассматривать как частный случай конических, когда вершина конуса отнесена в бесконечность (=0). Существуют разные способы образования цилиндрических проекций. Цилиндр может быть касательным к эллипсоиду или секущим его. В случае использования касательного цилиндра точность измерения длин выдержана по экватору. Если используется секущий цилиндр – по двум стандартным параллелям, симметричным относительно экватора. Применяются прямые, косые и поперечные цилиндрические проекции, в зависимости от расположения изображаемой области. Цилиндрические проекции применяют при составлении карт мелких и крупных масштабов.

Азимутальные проекции образуются путем проектирования земной поверхности на некоторую плоскость, определенным образом ориентированную относительно эллипсоида. В них параллели изображаются концентрическими окружностями, а меридианы – пучком прямых, исходящих из центра окружности. Углы между меридианами проекций равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим). Нормальная сетка проекции ортогональна. Азимутальные проекции можно рассматривать как частный случай конических проекций, в которых =1.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой, в свою очередь, зависит от расположения территории. В зависимости от искажений азимутальные проекции подразделяются как равноугольные, равновеликие и с промежуточными свойствами.

Существует большое разнообразие проекций: псевдоцилиндрические, поликонические, псевдоазимутальные и другие. От правильного выбора картографической проекции зависит возможность условий оптимального решения поставленных задач. Выбор проекций обусловлен многими факторами, которые условно можно объединить в три группы.

Первая группа факторов характеризует объект картографирования с точки зрения географического положения исследуемой территории, ее размеров, конфигурации, значимости отдельных ее частей.

Вторая группа включает факторы, характеризуемые создаваемую карту. В эту группу входят содержание и назначение карты в целом, способы и условия ее использования при решении задач ГИС, требования к точности их решения.

К третьей группе относятся факторы, которые характеризуют получаемую картографическую проекцию. Это условие обеспечения минимума искажений, допустимые максимальные величины искажений, характер их распределения, кривизна изображения меридианов и параллелей.

Выбор картографических проекций предлагается осуществлять в два этапа.

На первом этапе устанавливается совокупность проекций с учетом факторов первой и второй групп. При этом необходимо чтобы центральные линии или точки проекций, вблизи которых масштабы мало изменяются, находились в центре исследуемой территории, а центральные линии совпадали, по возможности, с направлением наибольшего распространения этих территорий. На втором этапе определяют искомую проекцию.

Рассмотрим выбор различных проекций в зависимости от расположения исследуемой территории. Азимутальные проекции выбирают, как правило, для изображения территорий полярных областей. Цилиндрические проекции предпочтительны для территорий, расположенных вблизи и симметрично относительно экватора и вытянутых по долготе. Конические проекции следует использовать для таких же территорий, но не симметричных относительно экватора или расположенных в средних широтах.

Для всех проекций выбранной совокупности по формулам математической картографии вычисляют частные масштабы и искажения. Предпочтение следует отдать, естественно, той проекции, которая имеет наименьшие искажения, более простой вид картографической сетки, а при равных условиях – более простой математический аппарат проекции. Рассматривая возможность использования равновеликих проекций, следует учитывать размер интересующей площади, а также величину и распределение угловых искажений, Небольшие участки отображаются с гораздо меньшими угловыми искажениями при использовании равновеликих проекций, что может быть полезно, когда значение имеют площадь и формы объектов. В случае, когда решают задачу определения наикратчайших расстояний лучше использовать проекции, не искажающие направления. Выбор проекции – один из основных процессов создания ГИС.

При решении задач картографирования в недропользовании на территории России наиболее часто используются две проекции, описанные ниже.

Видоизмененная простая поликоническая проекция применяется как многогранная, т.е. каждый лист определяется в своем варианте проекции.

Рисунок12. Номенклатурные трапеции листов масштаба 1:200000 в поликонической проекции

Особенности видоизмененной простой поликонической проекции и распределение искажений в пределах отдельных листов миллионного масштаба следующие:

    все меридианы изображаются прямыми линиями, отсутствуют искажения длин на крайних параллелях и на меридианах, отстоящих от среднего на ±2º,

    крайние параллели каждого листа (северная и южная) являются дугами окружностей, центры этих параллелей находятся на среднем меридиане, длина их не искажается, средние параллели определяются пропорциональным делением по широте вдоль прямолинейных меридианов,

Земная поверхность, принимаемая за поверхность эллипсоида, делится линиями меридианов и параллелей на трапеции. Трапеции изображаются на отдельных листах в одной и той же проекции (для карты масштаба 1: 1 000 000 в видоизмененной простой поликонической). Листы Международной карты мира масштаба 1: 1 000 000 имеют определенные размеры трапеций – по меридианам 4 градуса, по параллелям 6 градусов; на широте от 60 до 76 градуса листы сдваивают, они имеют размеры по параллелям 12; выше 76 градуса объединяют четыре листа и их размер по параллелям составляет 24 градуса.

Применение проекции как многогранной неизбежно связано с введением номенклатуры, т.е. системы обозначения отдельных листов. Для карты миллионного масштаба принято обозначение трапеций по широтным поясам, где в направлении от экватора к полюсам обозначение осуществляется буквами латинского алфавита (A,B,C и т.д.) и по колоннам арабскими цифрами, которые считают от меридиана с долготой 180 (по Гринвичу) против часовой стрелки. Лист, на котором расположен г. Екатеринбург, например, имеет номенклатуру О-41.

Рисунок 13. Номенклатурное деление территории России

Достоинством видоизмененной простой поликонической проекции, примененной как многогранная, является небольшая величина искажений. Анализ в пределах листа карты показал, что искажения длин не превышают 0.10%, площади 0.15%, углов 5´ и являются практически не ощутимыми. Недостатком этой проекции считают появление разрывов при соединении листов по меридианам и параллелям.

Конформная (равноугольная) псевдоцилиндрическая проекция Гаусса-Крюгера. Для применения такой проекции поверхность земного эллипсоида делят на зоны, заключенные между двумя меридианами с разностью долгот 6 или 3 градуса. Меридианы и параллели изображаются кривыми, симметричными относительно осевого меридиана зоны и экватора. Осевые меридианы шестиградусных зон совпадают с центральными меридианами листов карты масштаба 1: 1 000 000. Порядковый номер определяется по формуле

где N – номер колонны листа карты масштаба 1: 1 000 000.

Долготы осевых меридианов шестиградусных зон определяются по формуле

L 0 = 6n – 3, где n - номер зоны.

Прямоугольные координаты x и y в пределах зоны вычисляются относительно экватора и осевого меридиана, которые изображаются прямыми линиями

Рисунок 14. Конформная псевдоцилиндрическая проекция Гаусса-Крюгера

В пределах территории бывшего СССР абсциссы координат Гаусса-Крюгера положительные; ординаты положительные к востоку, отрицательные к западу от осевого меридиана. Чтобы избежать отрицательных значений ординат, точкам осевого меридиана условно придают значение y = 500 000 м с обязательным указанием впереди номера соответствующей зоны. Например, если точка находится в зоне с номером 11 в 25 075м к востоку от осевого меридиана, то значение ее ординаты записывается так: y = 11 525 075 м: если точка расположена к западу от осевого меридиана этой зоны на таком же расстоянии, то y = 11 474 925 м.

В конформной проекции углы треугольников триангуляции не искажаются, т.е. остаются такими же, как на поверхности земного эллипсоида. Масштаб изображения линейных элементов на плоскости постоянен в данной точке и не зависит от азимута этих элементов: линейные искажения на осевом меридиане равны нулю и постепенно возрастают по мере удаления от него: на краю шестиградусной зоны они достигают максимальной величины.

Во странах западного полушария применяют для составления топографических карт универсальную поперечно-цилиндрическую проекцию Меркатора (UTM) в шестиградусных зонах. Эта проекция близка по своим свойствам и распределению искажений к проекции Гаусса-Крюгера, но на осевом меридиане каждой зоны масштаб m=0.9996, а не единица. Проекция UTM получается двойным проектированием - эллипсоида на шар, а затем шара на плоскость в проекции Меркатора.

Рисунок 15. Преобразование координат в геоинформационных системах

Наличие в ГИС программного обеспечения, осуществляющего проекционные преобразования, позволяет легко перевести данные из одной проекции в другую. Такое бывает необходимо, если полученные исходные данные существуют в проекции, не совпадающей с выбранной в вашем проекте или нужно изменить проекцию данных проекта для решения какой-либо специфической задачи. Переход из одной проекции в другую носит название проекционных преобразований. Существует возможность перевода координат цифровых данных, изначально введенных в условных координатах дигитайзера или растровой подложки с помощью преобразований плоскости.

Каждый пространственный объект кроме пространственной привязки обладает некоторой содержательной сущностью, и в следующей главе рассмотрим возможности описания ее.