Внутреннее строение и свойства металлов и сплавов. Внутреннее строение металлов и сплавов кристаллическое строение металлов Какое внутреннее строение имеют металлы

Введение

Металлы -- простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро - и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны (блеск и непрозрачность), высокой прочностью и пластичностью.

Свойства металлов могут значительно измениться при очень высоких давлениях. Многие металлы в зависимости от температуры и давления могут существовать в виде нескольких кристаллических модификаций.

Подобными металлическими свойствами обладают более 80 химических элементов и множество металлических сплавов. Число металлических сплавов, применяемых в технике, исчисляется тысячами и постоянно возрастает в соответствии с возникающими новыми и разнообразными требованиями, предъявляемыми многими отраслями промышленности.

Свойства металлов обусловлены их кристаллическим строением и наличием в их кристаллической решетке многочисленных не связанных с атомными ядрами подвижных электронов проводимости.

Металлические сплавы по свойствам имеют много общего с металлами, поэтому их нередко относят к металлам.

Металлы (сплавы) в промышленности разделяют на две основные группы: черные и цветные металлы.

Черные металлы -- сплав железа с углеродом, в котором могут содержаться в большем или меньшем количестве и другие химические элементы. Кобальт, никель, а также близкий к ним по свойствам марганец нередко относят к черным металлам. Черные металлы получили наибольшее распространение, что обусловлено относительно высоким содержанием железа в земной коре, его низкой стоимостью, высокими механическими и технологическими свойствами.

Цветные металлы по свойствам подразделяют на следующие группы:

легкие (Be, Mg, Al, Ti), обладающие сравнительно малой плотностью -- до 5000 кг/м 3 ;

тугоплавкие (Ti, Сг, Zr, Nb, Mo, W, V и др.) с температурой плавления выше, чем у железа (1539°С);

благородные (Ph, Pd, Ag, Os, Pt, Аи и др.), обладающие химическойинертностью:

урановые (U, Th, Pa) -- актиноиды, используемые в атомной технике;

редкоземельные металлы (РЗМ), лантаноиды (Се, Рг, Nd, Sm и др.) и сходные с ними иттрий и скандий, применяемые как присадки к различным сплавам;

щелочноземельные металлы (Li, Na, К), используемые в качестве теплоносителей в ядерных реакторах.

Классификация металлических сплавов по химическому составу, основанная на указании главного компонента сплава (железо, медь, алюминий и др.), имеет традиционный характер, и получила наибольшее распространение.

Макро-, микро- и атомную структуру металлов и сплавов изучает металлография.

Макроструктура - это строение металла, видимое невооруженным глазом или с помощью лупы в изломе или на протравленном шлифе. Микроструктура строения металла, наблюдаемое под оптическим или электронным микроскопами, позволяющими увеличить рассматриваемый участок от десяти раз до сотен тысяч раз.

Атомная структура металлов - это пространственное расположение атомов в кристаллической решетке. Этот вид структуры исследуется с помощью рентгено- графического структурного анализа.

Строение металла

Все металлы имеют кристаллическое строение. Располагаясь тем или иным способом, атомы образуют элементарную ячейку пространственной кристаллической решетки. Тип ячейки зависит от химической природы и состояния металла. Кристаллическое состояние, прежде всего, характеризуется определенным, закономерным расположением атомов в пространстве. Это обусловливает то, что в кристалле каждый атом имеет одно и то же количество ближайших атомов -- соседей, расположенных на одинаковом от него расстоянии. В процессе кристаллизации положительно заряженные ионы, располагаясь последовательно в виде элементарных кристаллических решеток, образуют кристаллы в виде зерен или дендритов. Все металлы и сплавы имеют кристаллическое строение. Образующиеся кристаллы растут, кристаллизуются из жидкого расплава сначала свободно, не мешают один другому, потом они сталкиваются и рост кристаллов продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате первоначальная геометрически правильная форма кристаллов нарушается. После затвердевания зерна и дендриты имеют неправильную, геометрически искаженную форму.

Рисунок 1. Схема кристаллизации: а - в виде зерен; б - в виде дендритов.

Стремление атомов (ионов) металла расположиться, возможно, ближе друг к другу, плотнее, приводит к тому, что число встречающихся комбинаций взаимного расположения атомов металла в кристаллах невелико.

Существует ряд схем и способов описания вариантов взаимного расположения атомов в кристалле. Взаимное расположение атомов в одной из плоскостей показано на схеме размещения атомов (рисунок 2) .

Рисунок 2. Элементарная кристаллическая ячейка (простая кубическая).

Воображаемые линии, проведенные через центры атомов, образуют решетку, в узлах которой располагаются атомы (положительно заряженные ионы); это так называемая кристаллографическая плоскость. Многократное повторение кристаллографических плоскостей, расположенных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (ионов). Расстояния между центрами соседних атомов измеряются ангстремами (1 А= 1 * 10 -8 см) или в килоисках -- kX (1kX = 1,00202 А). Взаимное расположение атомов в пространстве и величину между атомных расстояний определяют рентгеноструктурным анализом. Расположение атомов в кристалле весьма удобно изображать в виде пространственных схем, в виде так называемых элементарных кристаллических ячеек. Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решетку. Простейшим типом кристаллической ячейки является кубическая решетка. В простой кубической решетке атомы расположены (упакованы) недостаточно плотно. Стремление атомов металла занять места, наиболее близкие друг к другу, приводит к образованию решеток других типов: кубической объемноцентрированной (рисунок 3, а), кубической гранецентрированной (рисунок 3, б) и гексагональной плотноупакованной (рисунок 3, в).

Рисунок 3. Элементарные кристаллические ячейки: а - кубическая объемноцентрированная; б - кубическая гранецентрированная; в - гексагональная плотноупакованная.

металл теплопроводность электромагнитный температурный

Кружки, отображающие атомы, располагаются в центре куба и по его вершинам (куб объемноцентрированный), или в центрах граней и по вершинам куба (куб гранецентрированный), или в виде шестигранника, внутрь которого наполовину вставлен также шестигранник, три атома верхней плоскости которого находятся внутри шестигранной призмы (гексагональная решетка).

Метод изображения кристаллической решетки, приведенный на рисунке 3, является условным (как в любой другой). Может быть, более правильно изображение атомов в кристаллической решетке в виде соприкасающихся шаров (левые схемы на рисунке 3). Однако такое изображение кристаллической решетки не всегда удобно, чем принятое (правые схемы на рисунке 3).

Размеры кристаллической решетки характеризуются параметрами, или периодами решетки. Кубическую решетку определяет один параметр -- длина ребра куба а (рисунок 3, а, б). Параметры имеют величины порядка атомных размеров и измеряются в ангстремах.

Так например, параметр решетки хрома, имеющего структуру объемноцентрированного куба, равен 2,878 А, а параметр решетки алюминия, имеющего структуру гранецентрированного куба, 4,041 А.

Параметр решетки -- чрезвычайно важная характеристика. Современные методы рентгеновского исследования позволяют измерить параметр с точностью до четвертого или даже пятого знака после запятой, т. е. одной десятитысячной -- одной стотысячной доли ангстрема.

Из рассмотрения схем кристаллических решеток (рисунок 3), если считать, что атомы являются как бы упругими, касающимися друг друга шарами, вытекает, что параметр решетки а и атомный диаметр d связаны простыми геометрическими соотношениями.

Для объемноцентрированного куба

Для гранецентрированного куба

Принимая для атома форму шара, можно подсчитать, что в кубической объемноцентрированной решетке атомы занимают 68% объема, а в кубической гранецентрированной (как и в гексагональной плотноупакованной) 74%, т.е. во втором случае атомы располагаются более плотно, более компактно.

Для металлов распространена гексагональная решетка (рисунок 3, в).

Если слои атомов касаются друг друга, т. е. три атома, изображенные внутри решетки (рисунок 3, в), касаются атомов, расположенных на верхней и нижней плоскостях, то имеем так называемую гексагональную плотноупакованную решетку.

Размеры гексагональной плотноупакованной решетки характеризуются постоянным значением с/а=1,633. При иных значениях с/а получается неплотлоупакованная гексагональная решетка.

Кубическая гранецентрированная и гексагональная решетки представляют самый плотный способ укладки шаров одного диаметра.

Некоторые металлы имеют тетрагональную решетку (рисунок 4); она характеризуется тем, что ребро с не равно ребру а. Отношение этих параметров характеризует так называемую степень тетрагональности. При с/а = 1 получается кубическая решетка. В зависимости от пространственного расположения атомов тетрагональная решетка (как и кубическая) может быть простой, объемноцентрированной и гранецентрированной.

Рисунок 4. Тетрагональная решетка

Существенное значение для свойств данного металла или сплава имеет число атомов, находящихся во взаимном контакте. Это определяется числом атомов, равноотстоящих на ближайшем расстоянии от любого атома.

Число атомов, находящихся на наиболее близком и равном расстоянии от данного атома, называется координационным числом. Так, например, атом в простой кубической решетке имеет шесть ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 6.

Центральный атом в объемноцентрированной решетке имеет восемь ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 8. Координационное число для гранецентрированной решетки равно 12. В случае гексагональной плотноупакованной решетки координационное число равно 12, а в случае с/а? 1,633 каждый атом имеет шесть атомов на одном расстоянии и шесть на другом (координационное число 6).

Для краткого обозначения кристаллической решетки с указанием в этом обозначении типа кристаллической решетки и координационного числа была принята одна из следующих систем (таблица 1).

Таблица 1

Каждый металл обладает определенной кристаллической решеткой.

Существенной характеристикой кристаллической структуры является число атомов, приходящихся на элементарную ячейку.

В о. ц. к. решетке атомы, находящиеся в вершине, принадлежат восьми элементарным ячейкам. Следовательно, каждый атом вносит в данную элементарную ячейку только одну восьмую часть своего объема. Центральный атом полностью принадлежит данной элементарной ячейке. Следовательно, на одну элементарную ячейку приходятся 1/8 * 8+1=2 атома.

В гранецентрированном кубе на одну элементарную ячейку приходятся четыре атома (1/8 ? 8 атом от числа расположенных в вершинах куба + 1/2 ? 6=3 атома из числа центрирующих грани).

Типично металлические элементы, расположенные в левой части таблицы Д. И. Менделеева, кристаллизуются в плотной упаковке, т. е. в простые кристаллические ячейки с большим координационным числом. Типично металлическими решетками являются, как указывалось, решетки о. ц. к., г. ц. к. и г. п. у. Действительно, почти все металлы, начиная от цинка, кадмия и ртути и левее имеют в большинстве случаев простые решетки.

Для неметаллических элементов характерно малое значение координационного числа (К4 и меньше). Неметаллы обладают меньшей плотностью и меньшим удельным весом, чем металлы.

Заключение

Металлы -- простые вещества, обладающие свободными, не связанными с определенными атомами электронами, которые способны перемещаться по всему объему тела. Эта особенность состояния металлического вещества определяет собой свойства металлов.

Атомы металлов легко отдают внешние (валентные) электроны, превращаясь при этом в положительно заряженные ноны. Отданные атомами свободные электроны непрерывно хаотически, т. е. беспорядочно, перемещаются по всему объему металла. Такие свободные электроны часто называют электронным газом. Положительно заряженные ионы при столкновении со свободными электронами на некоторое время могут превращаться в нейтральные атомы.

Таким образом, металлы состоят из упорядоченно расположенных в пространстве положительно заряженных ионов, перемещающихся среди них электронов и небольшого количества нейтральных атомов. Металлами являются алюминий, железо, медь, никель, хром и т.д.

Сплавы представляют собой системы, состоящие из двух или нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов. Например, сталь и чугун - сплавы железа с углеродом, кремнием, марганцем, фосфором и серой; бронза - сплав меди с оловом или другими элементами; латунь - сплав меди с цинком и другими элементами.

В промышленности широко применяют сплавы, получаемые сплавлением составляющих с последующей кристаллизацией из жидкого состояния, значительно меньше - сплавы, получаемые спеканием.

В процессе кристаллизации из расплавленного (жидкого) состояния металла или сплава положительно заряженные ионы и нейтральные атомы группируются в строго определенной последовательности, образуя кристаллические решетки - правильное упорядоченное расположение атомов в элементарной ячейке. Кристаллические решетки у металлов и сплавов могут быть различных типов: объемно-концентрированные кубические (о. ц. к.), гранецентрированные кубические (г. ц. к.), гексагональные плотноупакованные (г. п. у.). Объемно-концентрированную кубическую решетку образуют железо, медь, алюминий, свинец и др.; гексагональную плотноупакованную- цинк, магний, кобальт и др.

Для характеристики кристаллической решетки необходимо знать периоды решетки - расстояние а и с между центрами атомов или ионов, находящихся в узлах решетки. Период решетки измеряется в ангстремах (1А=10 -8 см).

В процессе кристаллизации положительно заряженные ионы, располагаясь последовательно в виде элементарных кристаллических решеток, образуют кристаллы в виде зерен или дендритов. Все металлы и сплавы имеют кристаллическое строение. Образующиеся кристаллы растут, кристаллизуются из жидкого расплава сначала свободно, не мешают один другому, потом они сталкиваются и рост кристаллов продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате первоначальная геометрически правильная форма кристаллов нарушается. После затвердевания зерна и дендриты имеют неправильную, геометрически искаженную форму.

При нагревании поглощаемое металлами тепло расходуется на колебательные движения атомов и вследствие этого на тепловое расширение металла. При плавлении объем металлов увеличивается на 3-4%. С повышением температуры колебательные движения атомов или ионов возрастают, кристаллические зерна распадаются и сплав, проходя через твердо-жидкое состояние, превращается в расплав.

Переход в жидкое состояние не приводит к полному уничтожению кристаллической структуры. В расплаве металлов и сплавов всегда находятся мельчайшие участки, в которых сохраняется первоначальное, наследственное строение металла, близкое к кристаллическому. Кроме того, всегда присутствуют тугоплавкие частицы (остатки футеровки печи, примеси других элементов), которые могут образовывать дополнительные центры кристаллизации и вызывать начало кристаллизации. На искусственном создании центров кристаллизации в расплаве с одновременным изменением его скорости охлаждения основано управление кристаллизации сплава с целью получения заданной структуры сплава в твердом состоянии.

Литература

1. Гуляев А.П. Металловедение.- 5-е изд., перераб. и доп. - М.: Издательство "металлургия", 1977.

2. Материаловедение для слесарей-сантехников, слесарей-монтажников, машинистов строительных машин: Учебник для сред. проф.-тех. училищ /Ю.Г.Виноградов, К.С.Орлов, Л.А.Попова. - М.: Высш. школа, 2-е изд., 1989.

3. Материаловедение. Лекция 5. З.О.

4. Мойзберг Р.К. Материаловедение, 1991.

5. Ханапетов М.В. Сварка и резка металлов. - 3-е изд., перераб. и доп. - М.: Стройиздат, 1988.

В изготовлении машин и рабочих установок, наиболее применяемыми стали металлы и их сплавы.
Металлы – это вещества, которые обладают высокой электропроводностью и теплопроводностью, блеском, ковкостью и другими свойствами, которые легко и не очень поддаются металлообработке .

В промышленности все металлы и сплавы делят на две категории: цветные и черные . Так называемые черные металлы – это чистое железо и сплавы на основе его материала. К цветным – относятся остальные виды металлов. Для правильного выбора металла для изготовления конструкций механизмов с дальнейшим анализом ее использования, механических и других свойст, которые влияют на надежность и работоспособность машин – нужно знать внутреннее строение, механические, физико-химические и технологические свойства, а также каким методом проделывать обработку металла и нуждается ли материал в резке металла (если материал нужно обработать резкой, то лучше это сделать при помощи плазменной резки металла).

В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Молекулы металлов (атомы, ионы) в пространстве располагаются в строго определенном порядке и между собой образуют кристаллическую решетку .
Образуется кристаллическая решетка посредством обработки металла , т.е. перехода его состояния из жидкого в твердое. Такой процесс носит название – кристаллизация . Впервые эти процессы были изучены ученым из России - Д.К. Черновым.

Процесс кристаллизации :
Сам процесс состоит из двух частей. У металла, который находится в жидком состоянии, атомы непрерывно двигаются. Если понизить температуру, то скорость передвижения атомов уменьшается, они сближаются и группируются в кристаллы (поэтому для того, чтобы изменить форму и структуру изделия, его подвергают металлообработке при помощи нагревания) – это первая часть, при ней образуются центры кристаллизации.
Затем идет рост вокруг центров кристаллизации – это уже вторая часть процесса. В самом начале рост кристаллов протекает свободно, но потом, рост одних – мешает росту другим, в результате формируется неправильная форма группы кристаллов, которые называются зёрнами. Размер полученных зёрен, значительно влияет на дальнейшую металлообработку изделий. Металл, состоящий из крупных зёрен - имеет низкую сопротивляемость к удару, если производится резка металла , то появляется трудность в получении низкой шероховатости на поверхности такого металла. Размеры зёрен зависят от условий кристаллизации и свойств самого металла.

Способы изучения металлической структуры :
Исследование структуры металлов и сплавов производится посредством макро и микро – анализов, а также и другими способами. При помощи макро-анализа изучается строение металла, которое можно увидеть невооруженным глазом или при помощи лупы. Эта структура определяется по макрошлифам или изломам. Макрошлиф – это образец металла, одна из сторон которого травлена кислотой и отшлифована.
При микро-анализе изучается размеры и формы зёрен, их структурные составляющие, выявляют микродефекты и качество термической обработки металла . Этот анализ производится по микрошлифам при помощи микроскопа. Микрошлиф – это некий образец металла, который имеет плоскую отполированную поверхность, травленую слабым раствором кислоты.

Свойства металлов :
Металлические свойства подразделяются на физико-химические, технологические и механические. Под механическими свойствами понимается сопротивляемость металла к воздействию на него внешней силы. К механическим свойствам относятся вязкость , прочность , стойкость и другие.
Прочность – это свойства металла в определенных условия не разрушаться, но воспринимать воздействие внешних сил. Это свойство является важным показателем при выборе метода обработки металла .
Вязкость – это сопротивление материала при ударной нагрузке.
Твердость – свойства материала к сопротивлению внедрения в него другого материала.

К основными технологическими свойствами относятся - ковкость , свариваемость , свойства плавления , обрабатываемость резанием и другие.
Ковкость – это свойства материала подвергаться металлообработке ковкой и другим методам обработки давлением.
Свариваемость – свойства материала создавать прочные сварные соединения.
Свойства плавления – свойства материала в расплавленном виде заполнять литейные формы и создавать плотные отливки с нужной конфигурацией.
Обрабатываемость резанием – свойства материала подвергаться резке металла для того, чтобы придать детали нужную форму, размер и шероховатость поверхности. Лучшим методом резки металлов является плазменная резка металла . После этого процесса металла практически не нуждается в дальнейшей металлообработке .
Для того, чтобы получать качественное изделие с хорошим внешним и внутренним строением, нужно хорошо разбираться в строении металлов, ведь только так можно получить отличный результат.

Большинство сплавов получают сплавлением компонентов в жидком состоянии. Компоненты, из которых состоят сплавы, в твердом состоянии могут по-разному взаимодействовать друг с другом, образуя механические смеси, твердые растворы и химические соединения.

Механическая смесь двух компонентов образуется тогда, когда они в твердом состоянии не растворяются друг в друге и не вступают в химическое взаимодействие. Сплавы – механические смеси (например, свинец–сурьма, олово–цинк) неоднородны по своей структуре и представляют смесь кристаллов данных компонентов. При этом кристаллы каждого компонента в сплаве полностью сохраняют свои индивидуальные свойства. Вот почему свойства таких сплавов (например, электросопротивление, твердость и др.) определяются как среднее арифметическое от величины свойств обоих компонентов.

Сплавы – твердые растворы характеризуются образованием общей пространственной кристаллической решетки атомами основного металла-растворителя и атомами растворимого элемента. Структура таких сплавов состоит из однородных кристаллических зерен, подобно чистому металлу. Существуют твердые растворы замещения (медноникелевые, железохромистые и др. сплавы) и твердые растворы внедрения (например, раствор железа и углерода) (рис. 5).

Сплавы - твердые растворы являются самыми распространенными. Их свойства отличаются от свойств составляющих компонентов. Так, например, твердость и электросопротивление у твердых растворов значительно выше, чем у чистых компонентов. Благодаря высокой пластичности они хорошо поддаются ковке и другим видам обработки давлением. Обрабатываемость резанием у твердых растворов низкие.

Химические соединения, подобно твердым растворам, являются однородными сплавами. Важной особенностью их является то, что при затвердевании образуется совершенно новая кристаллическая решетка, отличная от решеток составляющих сплав компонентов. Поэтому свойства химического соединения самостоятельны и не зависят от свойств компонентов. Химические соединения образуются при строго определенном количественном соотношении сплавляемых компонентов. Состав сплава химического соединения выражается химической формулой. Эти сплавы обладают обычно высоким электросопротивлением, большой твердостью, малой пластичностью. Так, химическое соединение железа с углеродом – цементит (Fe 3 C) тверже чистого железа в 10 раз.

Кристаллизация сплавов

Сплавы имеют более сложную структуру, чем простые металлы. В связи с этим процессы кристаллизации сплавов протекают значительно сложнее, чем металлов.

Сплавы в отличие от чистых металлов при затвердевании или плавлении имеют не одну, а две критические точки – температуры, при которых в металлах или сплавах происходят какие-либо превращения (рис. 6).

Для облегчения изучения сплавов их объединяют в системы.

К системам относятся все те сплавы, которые состоят из одних и тех же компонентов и отличающиеся друг от друга лишь количественным соотношением этих компонентов, т. е. концентрацией. Так, например, к системе сплавов свинец–сурьма относятся все сплавы, состоящие из свинца и сурьмы и отличающиеся друг от друга лишь количественным составом этих компонентов.

Количество сплавов одной системы, но разной концентрации настолько велико, что изучать по кривым охлаждения или нагревания все превращения, происходящие в каждом из них, практически невозможно, да и нерационально. Для изучения состояния сплавов выбранной системы в зависимости от температуры и концентрации строят диаграмму состояния.

У веществ в твердом состоянии строение кристаллическое или аморфное. В кристаллическом веществе атомы расположены по геометрически правильной схеме и на определенном расстоянии друг от друга, в аморфном же (стекле, канифоли) атомы расположены беспорядочно.

У всех металлов и их сплавов строение кристаллическое. На рис.12 показана структура чистого железа. Кристаллические зерна неопределенной формы не похожи на типичные кристаллы - многогранники, поэтому их называюткристаллитами, зернами или гранулами . Однако строение кристаллитов столь же закономерно, как и у развитых кристаллов.

Рис.12 . Микроструктура чистого железа (х - 150)

Виды кристаллических решеток . При затвердевании атомы металлов образуют геометрически правильные системы, называемыекристаллическими решетками . Порядок расположения атомов в решетке может быть различным. Многие важнейшие металлы образуют решетки, простейшие (элементарные) ячейки которых представляют форму центрированного куба (- и- железо, хром, молибден, вольфрам, ванадий, марганец), куба с центрированными гранями (- железо, алюминий, медь, никель, свинец) или гексагональную, как у шестигранной призмы, ячейку (магний, цинк,- титан,- кобальт).

Элементарная ячейка повторяется непрерывно в трех измерениях, образуя кристаллическую решетку, поэтому положение атомов в элементарной ячейке определяет структуру всего кристалла.

Элементарная ячейка центрированного куба (рис.13 ) состоит из девяти атомов, из которых восемь расположены по вершинам куба, а девятый - в его центре.

Рис.13. Элементарная ячейкаРис.14. Часть пространственной решет-

центрированного куба ки центрированного куба

Для характеристики кристаллической решетки (атомной структуры кристалла) применяют пространственную решетку , которая является геометрической схемой кристаллической решетки и состоит из точек (узлов), закономерно расположенных в пространств.

Рис.15. Элементарная ячейка кубаРис.16. Часть пространственной ре-

с центрированными гранями шетки куба с центрированными

На рис. 14 приведена часть пространственной решетки центрированного куба. Здесь взяты восемь смежных элементарных ячеек; узлы, расположенные по вершинам и в центре каждой ячейки, отмечены кружками. Элементарная ячейка куба с центрированными гранями (рис.15 ) состоит из 14 атомов, из них 8 атомов расположены по вершинам - куба и 6 атомов - по граням.

На рис.16 приведена часть пространственной решетки куба с центрированными гранями (гранецентрированного куба). На схеме имеется восемь элементарных ячеек; узлы расположены по вершинам и по центрам граней каждой ячейки. Гексагональная ячейка (рис.17 ) состоит из 17 атомов, из них 12 атомов расположены по вершинам шестигранной призмы, 2 атома - в центре оснований и 3 атома - внутри призмы. Для измерения расстояния между атомами кристаллических решеток пользуются специальной единицей, называемойангстремом см.

Рис.17. Гексагональная ячейка

Параметр решеток (сторона или шестигранника) у меди 3,6 А, а у алюминия 4,05 А, у цинка 2,67 А и т. д.

Каждый атом состоит из положительно заряженного ядра и нескольких слоев (оболочек) отрицательно заряженных и движущихся вокруг ядра электронов. Электроны внешних оболочек атомов металлов, называемые валентными , легко отщепляются, быстро движутся между ядрами и называютсясвободными . Вследствие наличия свободных электронов атомы металлов являются положительно заряженными ионами.

Таким образом, в узлах решеток, обозначенных кружками рис.14 и16 , находятся положительно заряженные ионы. Ионы, однако, не находятся в покое, а непрерывно колеблются положения равновесия. С повышением температуры амплитуда колебаний увеличивается, что вызывает расширение кристаллов, а при температуре плавления колебания частиц усиливаются настолько, что кристаллическая решетка разрушается.

Во всех кристаллах наблюдаются небольшие отклонения от идеальной решетки - незанятые узлы и различного рода смещения атомов.

Анизотропность и спайность кристаллов . В отдельных кристаллах свойства различны в разных направлениях. Если взять большой кристалл (существуют лабораторные и даже производственные методы выращивания крупных кристаллов) вырезать из него несколько одинаковых по размеру, но различно ориентированных образцов, и испытать их свойства, то иногда наблюдается весьма значительная разница в свойствах между отдельными образцами. Например, при испытании образцов, вырезанных из кристалла меди, относительное удлинение изменялось в пределах от 10 - 50 %, а предел прочности-от 14 до 35 кГ/мм 2 для различных образцов. Это свойство кристаллов называютанизотропностью . Анизотропность кристаллов объясняется особенностями расположения атомов в пространстве.

Следствием анизотропности кристаллов является спайность , которая выявляется при разрушении. В местах излома кристаллов можно наблюдать правильные плоскости, указывающие на смещение частиц под влиянием внешних сил не беспорядочное, а правильными рядами, в определенном направлении, соответственно расположению частиц в кристалле. Эти плоскости называютсяплоскостями спайности .

Аморфные тела изотропны, т. е. все их свойства одинаковы во всех направлениях. Излом аморфного тела всегда имеет неправильную искривленную, так называемую, раковистую поверхность.

Металлы, затвердевшие в обычных условиях, состоят не из одного кристалла, а из множества отдельных кристаллитов, различно ориентированных друг к другу, поэтому свойства литого металла приблизительно одинаковы во всех направлениях; это явление называют квазиизотропностью (кажущейся изотропностью).

Аллотропия металлов (или полиморфизм) - их свойство перестраивать решетку при определенных температурах в процессе нагревания или охлаждения. Аллотропию обнаруживают все элементы, меняющие валентность при изменении температуры: например, железо, марганец, никель, олово и др. Каждое аллотропическое превращение происходит при определенной температуре. Например, одно из превращений железа происходит при температуре 910°С, ниже которой атомы составляют решетку центрированного куба (см.рис.14 ), а выше - решетку гранецентрированного куба (см.рис.16 ).

Та или иная структура называется аллотропической формой или модификацией. Различные модификации обозначают греческими буквами , , и т. д., причем буквойобозначают модификацию, существующую при температурах ниже первого аллотропического превращения. Аллотропические превращения сопровождаются отдачей (уменьшением) или поглощением (увеличением) энергии.

Кристаллизация металлов . Кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое (первичная кристаллизация ). Перекристаллизацию из одной модификации в другую при остывании эатвердевшего металла называют (вторичной кристаллизацией ). Процесс кристаллизации металла легче всего проследить с помощью счетчика времени и термоэлектрического пирометра, который представляет собой милливольтметр, подключенный к термопаре. Термопару (две разнородные проволоки спаянные концами) погружают в расплавленный металл. Возникающий при этом термоток пропорционален температуре металла и стрелка милливольтметра отклоняется, указывая эту температуру по градуированной шкале.

Показания пирометра автоматически записываются во времени и по полученным данным строят кривые охлаждения в координатах «температура - время» (такие кривые вычерчивает самописец).

Температура, соответствующая какому-либо превращению в металле, называется критической точкой .

На рис.18, а приведена кривая нагрева металла. Здесь точка а - начало плавления, точкаb - окончание плавления.

Рис.18. Кривые нагревания (а ) и охлаждения (б - без петли,

в - с петлей) металла

Участок а b указывает на неизменность температуры во времени при продолжающемся нагревании. Это показывает, что тепловая энергия затрачивается на внутреннее превращение в металле, в данном случае. на превращение твердого металла в жидкий (скрытая теплота плавления).

Переход из жидкого состояния в твердое при охлаждении сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладить несколько ниже температуры плавления. Поэтому площадка на кривой охлаждения (рис.19,6 ) находится несколько нижеt пл при температуре переохлажденияt пр .

У некоторых металлов переохлаждение (t пл - t пр ) может оказаться весьма значительным (например, у сурьмы до 40°С) и при температуре переохлажденияt пр (рис. 18 , в ) сразу бурно начинается кристаллизация, в результате чего температура скачком повышается почти доt пл . В этом случае на графике вычерчивается петля теплового гистерезиса.

При затвердевании и при аллотропическом превращении в металле вначале возникают зародыши кристалла (центры кристаллизации), вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку.

Таким образом, процесс кристаллизации складывается из двух этапов: образования центров кристаллизации и роста кристаллов.

У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу и точки их соприкосновения определяют границы кристаллитов (зерен).

Кристаллизация железа . Рассмотрим в качестве примера кристаллизацию и критические точки железа.

Рис.19 . Кривые охлаждения и нагревания железа

На рис.19 приведены кривые охлаждения и нагревания чистого железа, которое плавится при температуре 1539 0 С. Наличие критических точек при меньших температурах указывает на аллотропические превращения в твердом железе.

Критические точки обозначаются буквой А , при нагревании обозначаютА c и при охлажденииAr индексы 2, 3, 4 служат для отличия аллотропических превращений (индекс 1 обозначает превращение на диаграмме состоянияFe - Fe 3 C .

При температурах ниже 768 0 С железо магнитно и имеет кристаллическую решетку центрированного куба. Эту модификацию называют-железо ; при нагревании она в точкеАс 2 переходит в немагнитную модификацию-железо . Кристаллическая структура при этом не меняется.

В точке Ас 3 при температуре 910 0 С-железо переходит в-железо с кристаллической решеткой гранецентрированного куба.

В точке Ас 4 при температуре 1401 0 С-железо переходит в-железо , причем кристаллическая решетка вновь перестраивается из гранецентрированного куба в центрированный куб.

При охлаждении происходят те же переходы, только в обратной последовательности.

Из перечисленных превращений наибольшее практическое значение имеют превращения А 3 как при нагреве (Ас 3 ), так и при охлаждении (А r 3 ).

Превращение в точке А 3 сопровождается изменением объема, так как плотность кристаллической решетки-железа больше плотности решетки-железа , в точкеАс 3 объем уменьшается, в точкеAr 3 - увеличивается.

Оглавление книги Следующая страница>>

§ 2. Строение металлов и сплавов и методы его изучения

Кристаллическое строение металлов . Изучением внутреннего строения и свойств металлов и сплавов занимается наука, называемая металловедением.

Все металлы и сплавы построены из атомов, у которых внешние электроны слабо связаны с ядром. Электроны заряжены отрицательно и если создать незначительную разность потенциалов, то электроны направятся к положительному полюсу, образуя электрический ток. Этим и объясняется электропроводность металлических веществ.

Все металлы и сплавы в твердом состоянии имеют кристаллическое строение. В отличие от некристаллических (аморфных) тел, у металлов атомы (ионы) расположены в строго геометрическом порядке, образуя пространственную кристаллическую решетку. Взаимное расположение атомов в пространстве и расстояния между ними устанавливаются рентгеноструктурным анализом. Расстояние между узлами в кристаллической решетке называется параметром решетки и измеряется в ангстремах Å (10 -8 см). Параметры решетки различных металлов колеблются от 2,8 до 6 Å (рис. 23).

Рис. 23. Элементарные кристаллические ячейки :

а — кубическая объемноцентрированная; б — кубическая гранецентрированная; в —гексагональная

Для наглядного представления о расположении атомов в кристалле используют пространственные схемы в виде элементарных кристаллических ячеек. Наиболее распространенными типами кристаллических решеток являются кубическая объемноцентрированная, кубическая гранецентрированная и гексагональная.

В кубической объемноцентрированной решетке расположено девять атомов. Такую решетку имеют хром, вольфрам, молибден, ванадий и железо при температуре до 910° С.

В кубической гранецентрированной решетке расположено 14 атомов. Такую решетку имеют: медь, свинец, алюминий, золото, никель и железо при температуре 910—1400° С.

В гексагональной плотноупакованной решетке расположено 17 атомов. Такую решетку имеют: магний, цинк, кадмий и другие металлы.

Взаимное расположение атомов в пространстве, количество атомов в решетке и междуатомные пространства характеризуют свойства металла (электропроводность, теплопроводность, плавкость, пластичность и т. д.).

Расстояние между атомами в кристаллической решетке может быть различным по разным направлениям. Поэтому и свойства кристалла по разным направлениям не одинаковы. Такое явление называется анизотропией. Все металлы — тела кристаллические, поэтому они являются телами анизотропными. Тела, у которых свойства во всех направлениях одинаковые, называются изотропными.

Кусок металла, состоящий из множества кристаллов, обладает в среднем свойствами, одинаковыми во всех направлениях, поэтому он называется квазиизотропным (мнимая изотропность).

Анизотропность имеет большое практическое значение. Например, путем ковки, штамповки, прокатки в деталях получают правильную ориентацию кристаллов, в результате чего вдоль и поперек детали достигаются различные механические свойства. С помощью холодной прокатки добиваются высоких магнитных и электрических свойств в определенном направлении детали.