Идеи использования энергии радиоволн. Один из лучших источников альтернативной энергии - электромагнитные волны Как получить напряжение из радиоволн

В этой статье описываются результаты экспериментов, проведённых на основе исследований В.Т. Полякова (RA3AAE) по схеме ЧМ радиоприёмника с питанием от энергии радиоволн (см. ЧМ детекторные приёмники). Оригинальная схема была модифицирована - в ней вместо обычного выпрямителя был установлен более эффективный выпрямитель с удвоением напряжения. В качестве антенны была применена пятиэлементная антенна Яги, позволяющая принимать сигналы с частотой 98..103 МГц, лежащие в середине радиовещательного ФМ диапазона. Идея применять дипольную антенну была ранее предложена В.Т. Поляковым. Применённый в оригинальной схеме высокочастотный германиевый транзистор ГТ311А с F t = 300 МГц обеспечивал относительно высокое выходное сопротивление на выходе, так что для приёма приходилось использовать головные телефоны с сопротивлением обмоток не менее 600 Ом.

Дальнейший анализ схемы привёл к идее применения простого усилителя низкой частоты на основе кремниевого транзистора BC109C с коэффициентом передачи h FE = 700. Применение дополнительного каскада усиления позволило использовать громкоговорители для прослушивания радиопередач. Более эффективный детектор с удвоением напряжения позволил достичь напряжения 2,2 вольт на конденсаторе С8 при работе без нагрузки. При подключённых громкоговорителях (динамики соединены параллельно) измеренный ток, протекающий в высокоомной части схемы, достиг величины 100 мА. В транзисторном каскаде усилителя низкой частоты используется схема включения транзистора с общим эмиттером, что позволяет трансформировать высокое выходное сопротивление первого каскада в довольно низкое сопротивление на выходе. Трансформатор трансформирует это сопротивление в ещё более низкое (14 кОм трансформируется в 4 Ома). Активный низкочастотный фильтр, образованный конденсатором С7, включённым между базой второго транзистора и средней обмоткой трансформатора понижает шумы, поступающие с выхода первого каскада. Также рекомендуется дополнительно установить конденсатор ёмкостью несколько нанофарад между коллектором первого транзистора и общим проводом.

С направленной антенной можно принимать три радиовещательные станции, две их которых расположены в 15 км от места приёма (город Винчи, Италия), а третья - более чем в 30 км. В данный момент проводятся эксперименты по использованию в схеме коаксиального резонатора, что позволит увеличить добротность Q приёмного контура и улучшить селективность настройки.

Рис. 1. Схема ЧМ детекторного приёмника

T: Zin 14 kΩ → Zout 4,8 Ω (K ≈ 60:1) R1: 70+200 kΩ R2: 30 Ω Tr1: AF239 Tr2: BC109C D1,D2: 1N82A L1: 5 витков (посеребренный провод диаметром 1 мм, намотка на оправке диаметром 8 мм) L2: 7 витков (посеребренный провод диаметром 1 мм, намотка на оправке диаметром 8 мм) C1: 8.5 pF (керамический, тип NP0) C2: 5-25 pF (тип KPV) C3, C4: 4n7 (керамический) C5: 0.15 μF C6: 3-28 pF (тип KPV) C7: 0.01 μF C8: 1 μF WA1: 5 - элементная Яги антенна LS1: 3.5 Ω громкоговоритель (диаметр 200 мм) LS2: 3.5 Ω громкоговоритель (диаметр 100 мм)

Рис. 2. Внешний вид УКВ ЧМ приёмника

Рис. 3. Вид на катушки индуктивности

Рис. 4. Приёмник со снятыми ручками настройки

На рисунках 2..4 показан внешний вид УКВ ЧМ приёмника BIDA 1 - его габаритные размеры всего 80х35х80 мм. В качестве компонентов использованы конденсатор переменной ёмкости с катушками индуктивности, выполненными из толстого посеребренного медного провода, что позволило получить высокую добротность Q контуров. В качестве транзистора первого каскада применён высокочастотный германиевый транзистор типа AF239. На рисунке 3 видны отводы, сделанные у катушек, их следует подобрать экспериментально, что позволит лучше согласовать импедансы между антенной и резонансными контурами L1 и L2. На транзисторе AF239 выполнен каскад усиления низкой частоты. Выпрямитель с удвоением напряжения выполнен по схеме Вилларда на двух германиевых диодах с малым падением напряжения 1N82A (после Второй Мировой войны эти модели диодов использовались в схемах радаров).

Рис. 8.
5 - элементная антенна Яги

Рис. 9.
Пятиэлементная антенна Яги - вид со стороны

Из схемы (рис. 1.) ясно видно, что высокочастотный каскад имеет автоматическое смещение, величина которого может регулироваться переменным резистором R1. Выходной каскад нагружен высокоимпедансным трансформатором. На рисунках 8 и 9 показана пятиэлементная антенна Яги с рабочей частотой 100 МГц. Импеданс антенны близок к 52 Ом, эта величина близка к волновому сопротивлению соединительного RG8 кабеля. Длина кабеля составляет всего 6 метров.

Во время испытаний приёмника пятиэлементная антенна Яги была направлена в северо-восточное направление (с противоположной стороны напряжённость поля была больше, но там проходили провода линии электропередач, которые могли повлиять на приём - к несчастью, большинство радиостанций были расположены со стороны юго-востока). Так как центральная частота антенны была 100 МГц, то удалось принять следующие радиостанции:
Radio Lady --> 98.2 MHz (передатчик был расположен на расстоянии 20 км от места приёма);
Radio Sei Sei --> 101.5 MHz (передатчик был расположен на расстоянии 20 км от места приёма);
RTL102.5 --> 101.2 MHz (передатчик был расположен на расстоянии 35 км от места приёма).

Мы уже писали про подобный метод, параллельно разрабатываемый другими учеными, в том примере демонстрируется возможность питания ЖК-будильника невдалеке от телевизионной вышки.
С текущей скоростью развития электроники, вскоре и обычным компьютерам потребуются лишь милливатты для функционирования, так что не следует списывать даннцю технологию со счетов, а лишь отложить её повсеместную реализацию на не такое уж и далёкое будущее.

ЭМИ от выключателя и всей цепи вход-выключатель-лампочка запросто действует на чувствительные цепи компьютера. Этого конечно быть не должно, но когда компьютер на последнем издыхании то любой дополнительный толчок и зависон. Проверь в первую очередь электролиты на материнке на беременность. п.с. один древний вичестер HITACHI, в котором в SMART ещё выводились реальные данные по количеству корректировок повреждёных данных при считывании, прекрасно реагировал на приближение грозы - можно было по SMART смотреть за ошибками - когда грозы нет 10-100 корректировок в минуту, а во время грозы когда она ещё на горизонте и грома не слышно - доходит до миллиона.

Как создать радиоволну

Сделайте простейшее устройство для получения электромагнитных колебаний, подключив к выводам генератора катушку индуктивности, конденсатор и сопротивление. Но чтобы от генератора побежала электромагнитная волна, этого недостаточно. Ни один из элементов описанной схемы не подходит на роль передающей антенны, поэтому ее придется делать в качестве самостоятельного элемента системы.

Чтобы исправить положение, подключите параллельно катушке индуктивности конденсатор подходящей емкости. Для настройки системы в резонанс желательно использовать конденсатор переменной емкости, делающей весь колебательный контур управляемым. При работе устройства катушка и конденсатор будут обмениваться между собой энергией, излишки энергии станут «перекачиваться» между этими элементами, а источник, поступающей в нагрузку энергии, отдаст лишь то количество энергии, которое переходит в тепло.

Для получения излучения изготовьте антенну. Самая простая антенна состоит из двух длинных и тонких стержней, причем оптимальная длина каждого из стержней должна равняться четверти длины волны. Сами стержни расположите вдоль одной прямой, а затем подключите к антенне генератор незатухающих колебаний. Примерно такие же антенные устройства нередко применяют не для передачи, а для приема в телевизорах.

Опытным путем подберите размеры стержней антенны, чтобы не создавалась излишняя нагрузка на генератор передатчика, а отнимаемая у него энергия излучалась в пространство. В некоторых случаях бывает полезно подключить последовательно с антенной катушку индуктивности. Это позволит компенсировать емкостное сопротивление антенного провода.

Для генерации радиоволны в строго определенном направлении составьте антенну из нескольких проводников, подобрав их длину и взаимное расположение, а затем подавая в эти проводники токи от генерирующего устройства в нужных фазах. Таким способом можно продемонстрировать явление интерференции волн. Не всегда требуется все проводники подключать к генератору, достаточно получить ток в проводнике, который находится в магнитном поле основной антенны.

Источники: besprovodnoe.ru, forum.cxem.net, www.3dnews.ru, www.kakprosto.ru, genby.ru

Древний остров Кефалиния

Фея Моргана - коварный замысел

Баллада Черных гор

Четыре солнца

Легенды церкви Преображения Господня


Россия славится своими восхитительными храмами. Есть даже такой, в строительстве которого, по легенде, не использовались гвозди – Преображенская церковь на Карельском острове Кижи. До...

Самые большие дирижабли

Изначально Airlander разрабатывался в рамках проекта военного ведомства США, от которого оно вскоре отказалось. В результате у британской компании появилась уникальная...

Иаков и Исав

Исаак взял в жены Ревекку, когда ему было 40 лет. Они очень любили друг друга, но их жизнь омрачало то обстоятельство, что...

Школы раннего Средневековья

Огромное влияние на развитие образования в Средневековье оказала Католическая Церковь. При монастырях существовали при церквях — . Прежде всего они готовили духовных...

Рыбак, видевший фейри

Рыбак из Сен-Жакю-де-ла-Мер, возвращаясь однажды вечером из плавания домой по влажному песку пляжа, сам того не подозревая, забрел в пещеру...

Марсоход Curiosity

Марсоход Curiosity который стартовал 26 ноября 2011 года и всё это время державший курс на красную планету, 6 августа приземлился на...

Инанна в аду

Однажды произошло событие, которое побудило богиню Инанну отправиться в преисподнюю. Древние тексты, рассказывающие, по какой причине оказалась Инанна в аду, не...

В условиях современного мира, когда постоянно дорожают энергоносители, многие люди обращают свои взоры на возможности сэкономить свои средства посредством использования каких-либо альтернативных источников электроэнергии.

Данная проблема занимает умы не только доморощенных изобретателей, которые пытаются найти решение дома с паяльником в руках, но и настоящих учёных. Это вопрос, который муссируется уже давно, и предпринимаются самые разные попытки для нахождения новых источников электричества.

Можно ли получить электричество из воздуха

Возможно, многие могут подумать, что это откровенный бред. Но реальность такова, что получить электроэнергию из воздуха возможно. Существуют даже схемы, которые могут помочь создать устройство, способное осуществить получение этого ресурса буквально из ничего.

Принцип работы такого устройства заключается в том, что воздух является носителем статического электричества, просто в очень малых количествах, и если создать подходящее устройство, то вполне можно накапливать электричество.

Опыты известных учёных

Можно обратиться к трудам уже известных учёных, которые в прошлом пытались получать электричество буквально из воздуха. Одним из таких людей является знаменитый учёный Никола Тесла. Он был первым человеком, который задумался о том, что электроэнергию можно получить, грубо говоря, из ничего.

Конечно, во времена Тесла не было возможности записать все его опыты на видео, поэтому на данный момент специалистам приходится воссоздавать его устройства и результаты его исследования согласно его записям и старым свидетельствам его современников. И, благодаря многим опытам и исследованиям современных учёных, можно соорудить устройство, которое позволит осуществить получение электричества.

Тесла определил, что между основанием и поднятой металлической пластиной существует электрический потенциал, представляющий собой статическое электричество, также он определил, что его можно накапливать.

Впоследствии Никола Тесла смог сконструировать такое устройство, которое смогло накапливать незначительное количество электроэнергии, используя лишь тот потенциал, который содержится в воздухе. Кстати, сам Тесла предполагал, что наличием электричества в своём составе, воздух обязан солнечным лучам, которые при пронизывании пространства буквально делится своими частицами.

Если обратиться к изобретениям современных учёных, то можно привести пример устройства Стивена Марка, который создал тороидальный генератор, позволяющий удерживать намного больше электроэнергии, в отличие от простейших изобретений подобного рода. Его преимущество заключается в том, что это изобретение способно обеспечить электричеством не только слабые осветительные приборы, но и довольно серьёзные бытовые приборы. Этот генератор способен осуществлять свою работу без подпитки в течение довольно длительного времени.

Простые схемы

Существуют довольно простые схемы, которые помогут создать устройство, способное осуществлять получение и накопление электрической энергии, которая содержится в воздухе. Этому способствует наличие в современном мире множество сетей, линий электропередач, которые способствуют ионизации воздушного пространства.


Создать устройство, получающее электричество из воздуха, можно и своими руками, используя лишь довольно простую схему. Также существуют различные видео, которые смогут стать той необходимой инструкцией для пользователя.

К сожалению, создать мощный прибор своими руками весьма непросто. Более сложные устройства предполагают использование более серьёзных схем, что иногда существенно затрудняет создание такого прибора.

Можно попытаться создать более сложный прибор. В интернете приведены более сложные схемы, а также видеоинструкции.

Видео: самодельный генератор свободно энергии

Электромагнитное излучение сейчас повсюду, куда ни плюнь. Радио, телевидение, мобильная и спутниковая связи, бытовые приборы. Сейчас мы буквально «купаемся» в море электромагнитного излучения которое сами же производим, ее еще называют «электронным смогом». Используем неэффективно и бездарно разбазариваем. Платим огромные деньги за энергоносители, а использовать толком не научились. Даже бумагу, пластик и металл может повторно перерабатывать и использовать, а энергию электромагнитного излучения нет. Лишь немногие знают о том, что эту энергию можно повторно использовать. Как?

Энергия вокруг нас

В последнее время был ряд публикаций на тему получения энергии из вакуума. Тема конечно интересная и для многих еще не привычная и непонятная. Об этом говорит вал критики в комментариях к таким публикациям. Все мы привыкли, что электричество в подавляющем большинстве случаев приходит к нам по проводам от электростанций. Не для кого так же не являются экзотикой солнечные батареи и ветрогенераторы. Некоторые их даже используют, хотя до массового применения пока еще далековато, процент использования «даровой» энергии все еще сравнительно низкий.

Много разговоров в ученом мире идет о так называемой «Темной материи» и соответсвенно находящейся в ней «темной энергии». Пока что использование такой энергии остается «делом темным». Известно только что вокруг нас этой энергии полно. Но мало кто знает (а точнее не замечает) тот факт что вокруг нас полно другой, давно привычной нам энергии - электромагнитных волн.

Детекторные приемники

Еще будучи школьником посещал кружок радиоэлектроники, где мы с ребятами собирали свои первые электронные схемы. Среди них были и приемники, которые могли работать без батареек(!). «Как такое возможно?» Да очень просто - для работы такого приемника достаточно энергии радиоволн излучаемых передающей станцией (особенно если она недалеко находится). Подобных схем детекторных приемников можно найти немало.

Радио это конечно интересно, но хотелось попробовать использовать энергию радиоволн иначе, например для питания игрушечного электромоторчика. Он крутился, но энергии для него оказалось маловато. Но все-таки работало!

Действие источников постоянного тока, которые описаны ниже, основано на использовании так называемой свободнодоступной энергии, т. е. энергии радиоволн мощной местной радиостанции. Такие источники позволяют питать транзисторные приемники (на 1…3 транзисторах). Был проведен такой опыт. Вдали от города на высоте 4 м подвешивали проволочную антенну длиной около 30 м. На нагрузке 9 кОм была выделена мощность постоянного тока 0,9 мВт. При этом передатчик мощностью 1 кВт и рабочей частотой 1,6 МГц находился на расстоянии около 2,5 км. На зажимах конденсатора фильтра (при холостом ходе) были зафиксировано напряжение примерно 5 В. Такие результаты получаются только с помощью большой антенны, направленной на передатчик.

На практике находят применение другие более эффективные схемы. Известны три способа питания приемников от выпрямленного ВЧ напряжения радиостанции. Первый заключается в том, что прием радиостанции ведется на две антенны. Сигналы радиостанций, принимаемые второй антенной, преобразуются в постоянный ток, который используется для питания приемника. При другом способе используется одна антенна и часть улавливаемой ею энергии отводится в схему преобразователя. В последнем способе применяются две антенны: первая антенна - для приема радиопередач, которые слушают, а вторая принимает сигналы другой радиостанции, которые преобразуются в напряжение питания.

Простейшая схема беспроводной радиоточки изображена на рис. а-в. Она может принимать местную радиостанцию, например, ту же «Варшаву II» и одновременно использовать ее энергию для преобразования в э. д. с. постоянного тока. Для приема радио волн частотой выше 50 МГц, т. е. сигналов передатчиков УКВ (например, телевизионных), преобразователь ВЧ напряжения должен иметь специальную антенну - петлевой вибратор (диполь). Эта антенна может одновременно работать в средневолновом диапазоне, как на приемник, так и на источник питания. Если энергии одного вибратора недостаточно, то применяют несколько антенн этого типа (рис. д), соединенных последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока).

С помощью антенны, изображенной на рис. д, улавливающей энергию радиоволн 50-кВт передатчика, работающего в диапазоне 50…250 МГц, получили мощность постоянного тока около 3 мВт. Антенна находилась на расстоянии 1,5 км от передатчика. На рис. е показана схема приемника с двумя антеннами, одна из которых (УКВ) используется в источнике питания. Средневолновый приемник может работать с любой антенной, в то время как к источнику питания должны поступать энергия ВЧ колебаний от дипольной антенны. В положении 1 выключателя В1 устройство действует как сигнализатор, приводимый в действие модулированным ВЧ сигналом, в положении 2 как приемник.

Интересным примером использования энергии радиоволн для питания радиоустройств может служить схема, изображенная на рис. ж. Это радиобуй (наземный, речной или морской), который включается сигналом передатчика, установленного на автомашине, пароходе, планере или самолете. Сигналы запроса запускают передатчик на буе, ответные сигналы которого служат для определения его местоположения. Сигнальные устройства такого типа облегчают поиски людей, заблудившихся в море, горах, густых лесных массивах и т, п. Они являются частью экипировки туристов и альпинистов. Умелое использование энергии радиоволн позволит, по-видимому, существенно уменьшить размеры слуховых аппаратов, приемников, устройств дистанционного управления, игрушек и т. п. Следует, однако, сказать, что, как показали эксперименты, приемлемых результатов при питании приемников от выпрямленного ВЧ напряжения принимаемых радиоволн можно добиться, только применяя тщательно настроенные антенны и хорошее заземление. Другой недостаток состоит в том, что величина выпрямленного напряжения зависит от глубины модуляции несущей частоты во время приема.

Если есть электромагнитное излучение, значит оно обладает энергией и эту энергию можно использовать. Здесь ничего не противоречит законам физики, в отличии от так называемых «генераторов энергии из вакуума». В данном случае речь идет о реальном энергетическом излучении.

Сама по себе эта идея не нова, ей примерно столько же лет, что и самому радиовещанию. Заметки на эту тему можно найти и в отечественных журналах, издававшихся на заре нашего радиолюбительства. Понятно, что много «свободной энергии» от такого источника не получишь, да и вообще заниматься этим имеет смысл только тем, кто живет на относительно небольшом удалении от передатчиков.

Во например схема американского радиолюбителя Майкла Ли:

Для приема «свободной энергии» автор использовал антенну (WA1) и систему заземления любительской радиостанции. Антенна - луч длиной 43 метра. Это в несколько раз меньше длины волны средневолновых радиостанций, поэтому входной импеданс такой антенны имеет заметную емкостную составляющую. Соединенные параллельно конденсатор переменной емкости С1 и постоянный конденсатор С2 включены с ней последовательно, что позволяет регулировать приведенное значение емкостной составляющей в точке подключения верхнего (по схеме) вывода катушки L1 (иными словами, изменять резонансную частоту последовательного контура, образованного этой катушкой и емкостью антенны).

При резонансе контура на катушке L1 может возникать значительное ВЧ напряжение от несущей радиостанции, на которую настроен колебательный контур. В экспериментах автора при индуктивности катушки L1 39 мкГн резонанс на частоте 1370 кГц (на ней работала самая мощная местная радиостанция) наступал при суммарной емкости конденсаторов С1 и С2. равной 950 пФ (интервал перестройки ограничен частотами 1100 и 1600 кГц).

Поскольку ВЧ напряжение в данном случае надо снимать с высокоомной цепи, диод выпрямителя VD1 подключен к отводу катушки. Его место подбирают при налаживании устройства по максимальной выходной мощности. Как отмечает автор, место отвода было не критично: примерно одинаковые результаты получались, когда он находился в интервале от 1/4 до 1/6 числа витков катушки, считая от ее нижнего (по схеме) вывода.

Для того чтобы избежать перезарядки аккумулятора или выхода из строя диодов выпрямителя при отключении аккумулятора (из-за возможного их пробоя обратным напряжением), в устройство введен узел защиты на транзисторах VT1 и VT2. При напряжении на нагрузке менее 12 В ток через стабилитрон VD3 не протекает, поэтому транзисторы закрыты. При увеличении напряжения сверх этого значения они открываются и резистор R4 шунтирует выход выпрямителя.

По измерениям автора, устройство, настроенное на частоту указанной выше радиостанции, обеспечивало ток зарядки аккумуляторной батареи до 200 мА. (К сожалению, сведений о мощности передатчика в заметке нет, сказано лишь, что расстояние до него около 1,6 км). По оценкам, концентратор за год «выдал» около 1700 А-ч для зарядки батареи… Причем, в отличие, например, от солнечных батарей, его можно использовать практически круглосуточно (точнее, в течение всего времени работы радиостанции).

Для настройки контура автор применил конденсатор переменной емкости с большим зазором между пластинами ротора и статора, но если напряжение, развиваемое в системе при резонансе, не слишком велико, можно использовать и конденсатор с воздушным диэлектриком от радиовещательного приемника.

Катушка индуктивности L1 намотана на каркасе диаметром 50 мм и содержит 60 витков провода диаметром 1,6 мм, длина намотки - 250 мм (шаг - примерно 4 мм). Магнитопровод дросселя 12 - кольцевой Т-106-2 (27×14,5×11,1 мм) из карбонильного железа, обмотка состоит из 88 витков провода диаметром 0,4 мм. Диоды VD1 и VD2 рассчитаны на прямой ток до 1 А и обратное напряжение 40 В. Стабилитрон VD3 - с напряжением стабилизации 12 В.

Разумеется, при повторении устройства параметры элементов колебательного контура (индуктивность катушки L1 и емкость конденсаторов С1 и С2) должны быть скорректированы под имеющуюся антенну и частоту местной радиостанции.

На тему, что в далеком детстве мы собирали транзисторные приемники с питанием от электромагнитных волн. Как ни странно, но эта фраза привлекла внимание сразу нескольких выживальщиков на предмет возможнсти зарядки маломощных аккумуляторов...

Не долго думая решил разместить пару материальчиков, объединенных общим принципом получения дармовой энергии. Первый взят из книги Яноша Войцеховского "Радиоэлектронные игрушки", второй - с сайта ассоциации американских радиолюбителей http://www.arrl.org/

Второй материальчик более полезен т.к. устройство, представленное там, после некоторой доработки, будет заряжать аккумулятор и в случае отсутствия рядом крупной радиостанции:о)


Энергия электромагнитного поля.

Действие источников постоянного тока, которые описаны ниже, основано на использовании так называемой свободнодоступной энергии, т. е. энергии радиоволн мощной местной радиостанции. Такие источники позволяют питать транзисторные приемники (на 1...3 транзисторах). Был проведен такой опыт. Вдали от города на высоте 4 м подвешивали проволочную антенну длиной около 30 м. На нагрузке 9 кОм была выделена мощность постоянного тока 0,9 мВт. При этом передатчик мощностью 1 кВт и рабочей частотой 1,6 МГц находился на расстоянии около 2,5 км. На зажимах конденсатора фильтра (при холостом ходе) были зафиксировано напряжение примерно 5 В. Такие результаты получаются только с помощью большой антенны, направленной на передатчик.

На практике находят применение другие более эффективные схемы. Известны три способа питания приемников от выпрямленного ВЧ напряжения радиостанции. Первый заключается в том, что прием радиостанции ведется на две антенны. Сигналы радиостанций, принимаемые второй антенной, преобразуются в постоянный ток, который используется для питания приемника. При другом способе используется одна антенна и часть улавливаемой ею энергии отводится в схему преобразователя. В последнем способе применяются две антенны: первая антенна — для приема радиопередач, которые слушают, а вторая принимает сигналы другой радиостанции, которые преобразуются в напряжение питания.

В любом случае минимальная мощность ВЧ напряжения, требуемая для работы приемника, равна 50 мкВт. Этого хватает только для однотранзисторных приемников (или передатчиков). Если нашему приемнику необходим ток (например, 1 мА при напряжении 3 В), то тогда требуемая мощность ВЧ напряжения возрастает до 3 мВт и это значение следует принять как среднее. То, что на расстоянии 20...30 км от радиостанции «Варшава II» (818 кГц) можно еще практически получить мощность выпрямленного тока около 8 мВт, свидетельствует о перспективности подобных экспериментов.

Простейшая схема беспроводной радиоточки изображена на рис. 6.3, а—в. Она может принимать местную радиостанцию, например, ту же «Варшаву II» и одновременно использовать ее энергию для преобразования в э. д. с. постоянного тока. Для приема радио волн частотой выше 50 МГц, т. е. сигналов передатчиков УКВ (например, телевизионных), преобразователь ВЧ напряжения должен иметь специальную антенну — петлевой вибратор (диполь). Эта антенна может одновременно работать в средневолновом диапазоне, как на приемник, так и на источник питания. Если энергии одного вибратора недостаточно, то применяют несколько антенн этого типа (рис. 6.3, д), соединенных последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока).

С помощью антенны, изображенной на рис. 6.3, д, улавливающей энергию радиоволн 50-кВт передатчика, работающего в диапазоне 50...250 МГц, получили мощность постоянного тока около 3 мВт. Антенна находилась на расстоянии 1,5 км от передатчика. На рис. 6.3, е показана схема приемника с двумя антеннами, одна из которых (УКВ) используется в источнике питания. Средневолновый приемник может работать с любой антенной, в то время как к источнику питания должны поступать энергия ВЧ колебаний от дипольной антенны. В положении 1 выключателя В1 устройство действует как сигнализатор, приводимый в действие модулированным ВЧ сигналом, в положении 2 как приемник.

Интересным примером использования энергии радиоволн для питания радиоустройств может служить схема, изображенная на рис. 6.3, ж. Это радиобуй (наземный, речной или морской), который включается сигналом передатчика, установленного на автомашине, пароходе, планере или самолете. Сигналы запроса запускают передатчик на буе, ответные сигналы которого служат для определения его местоположения. Сигнальные устройства такого типа облегчают поиски людей, заблудившихся в море, горах, густых лесных массивах и т, п. Они являются частью экипировки туристов и альпинистов. Умелое использование энергии радиоволн позволит, по-видимому, существенно уменьшить размеры слуховых аппаратов, приемников, устройств дистанционного управления, игрушек и т. п. Следует, однако, сказать, что, как показали эксперименты, приемлемых результатов при питании приемников от выпрямленного ВЧ напряжения принимаемых радиоволн можно добиться, только применяя тщательно настроенные антенны и хорошее заземление. Другой недостаток состоит в том, что величина выпрямленного напряжения зависит от глубины модуляции несущей частоты во время приема.

Питание радиоустройств энергией электромагнитного поля:

а...в—приемник для приема передач мощных радиостанций в диапазоне СВ;
г — приемник c выпрямителем, подзаряжающим аккумуляторы (выключатель В показан в позиции «Заряд»);
д — набор УКВ антенн, питающих выпрямитель;
е —приемник-сигнализатор;
ж — автоматический буй-маяк.

Лучше работает приемник, схема которого показана на рис.6.3, г, в котором выпрямленное ВЧ напряжение принимаемой радиостанции используется для подзарядки миниатюрных кадмиево-никелевых аккумуляторов в то время, когда приемник не работает, На расстоянии 20 км от радиостанции «Варшава 1» и при длине наружной антенны приемника 40 м ток заряда аккумуляторной батареи напряжением 2,5 В равен 5 мА. Такая зарядка практически восполняет расход электрической энергии во время одночасовой работы приемника.

Войцеховский Я. "Радиоэлектронные игрушки" - М.: Советское радио, 1978

Заряжаем аккумулятор от энергии электромагнитного поля.

Провод полотна антенны и снижения желательно взять с соотношением диаметров 2:1

Очень важно сделать хорошее заземление.

От себя предлагаю попробовать сделать следующее:

  1. Убираем катушку и конденсаторы (те, что составляют последовательный колебательный контур)
  2. Диод, подключенный параллельно конденсатору переносим влево.
  3. Антенну подключаем к точке соединения диодов (кстати - не рекомендую ее делать сразу слишком длинной:о)
  4. Заземление можно убрать

Полученный результат если и не удивит то точно понравится:о)