Основы линейной регрессии. Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных Регрессионные методы сколько их

В статистическом моделировании регрессионный анализ представляет собой исследования, применяемые с целью оценки взаимосвязи между переменными. Этот математический метод включает в себя множество других методов для моделирования и анализа нескольких переменных, когда основное внимание уделяется взаимосвязи между зависимой переменной и одной или несколькими независимыми. Говоря более конкретно, регрессионный анализ помогает понять, как меняется типичное значение зависимой переменной, если одна из независимых переменных изменяется, в то время как другие независимые переменные остаются фиксированными.

Во всех случаях целевая оценка является функцией независимых переменных и называется функцией регрессии. В регрессионном анализе также представляет интерес характеристика изменения зависимой переменной как функции регрессии, которая может быть описана с помощью распределения вероятностей.

Задачи регрессионного анализа

Данный статистический метод исследования широко используется для прогнозирования, где его использование имеет существенное преимущество, но иногда это может приводить к иллюзии или ложным отношениям, поэтому рекомендуется аккуратно его использовать в указанном вопросе, поскольку, например, корреляция не означает причинно-следственной связи.

Разработано большое число методов для проведения регрессионного анализа, такие как линейная и обычная регрессии по методу наименьших квадратов, которые являются параметрическими. Их суть в том, что функция регрессии определяется в терминах конечного числа неизвестных параметров, которые оцениваются из данных. Непараметрическая регрессия позволяет ее функции лежать в определенном наборе функций, которые могут быть бесконечномерными.

Как статистический метод исследования, регрессионный анализ на практике зависит от формы процесса генерации данных и от того, как он относится к регрессионному подходу. Так как истинная форма процесса данных, генерирующих, как правило, неизвестное число, регрессионный анализ данных часто зависит в некоторой степени от предположений об этом процессе. Эти предположения иногда проверяемы, если имеется достаточное количество доступных данных. Регрессионные модели часто бывают полезны даже тогда, когда предположения умеренно нарушены, хотя они не могут работать с максимальной эффективностью.

В более узком смысле регрессия может относиться конкретно к оценке непрерывных переменных отклика, в отличие от дискретных переменных отклика, используемых в классификации. Случай непрерывной выходной переменной также называют метрической регрессией, чтобы отличить его от связанных с этим проблем.

История

Самая ранняя форма регрессии - это всем известный метод наименьших квадратов. Он был опубликован Лежандром в 1805 году и Гауссом в 1809. Лежандр и Гаусс применили метод к задаче определения из астрономических наблюдений орбиты тел вокруг Солнца (в основном кометы, но позже и вновь открытые малые планеты). Гаусс опубликовал дальнейшее развитие теории наименьших квадратов в 1821 году, включая вариант теоремы Гаусса-Маркова.

Термин «регресс» придумал Фрэнсис Гальтон в XIX веке, чтобы описать биологическое явление. Суть была в том, что рост потомков от роста предков, как правило, регрессирует вниз к нормальному среднему. Для Гальтона регрессия имела только этот биологический смысл, но позже его работа была продолжена Удни Йолей и Карлом Пирсоном и выведена к более общему статистическому контексту. В работе Йоля и Пирсона совместное распределение переменных отклика и пояснительных считается гауссовым. Это предположение было отвергнуто Фишером в работах 1922 и 1925 годов. Фишер предположил, что условное распределение переменной отклика является гауссовым, но совместное распределение не должны быть таковым. В связи с этим предположение Фишера ближе к формулировке Гаусса 1821 года. До 1970 года иногда уходило до 24 часов, чтобы получить результат регрессионного анализа.

Методы регрессионного анализа продолжают оставаться областью активных исследований. В последние десятилетия новые методы были разработаны для надежной регрессии; регрессии с участием коррелирующих откликов; методы регрессии, вмещающие различные типы недостающих данных; непараметрической регрессии; байесовские методов регрессии; регрессии, в которых переменные прогнозирующих измеряются с ошибкой; регрессии с большей частью предикторов, чем наблюдений, а также причинно-следственных умозаключений с регрессией.

Регрессионные модели

Модели регрессионного анализа включают следующие переменные:

  • Неизвестные параметры, обозначенные как бета, которые могут представлять собой скаляр или вектор.
  • Независимые переменные, X.
  • Зависимые переменные, Y.

В различных областях науки, где осуществляется применение регрессионного анализа, используются различные термины вместо зависимых и независимых переменных, но во всех случаях регрессионная модель относит Y к функции X и β.

Приближение обычно оформляется в виде E (Y | X) = F (X, β). Для проведения регрессионного анализа должен быть определен вид функции f. Реже она основана на знаниях о взаимосвязи между Y и X, которые не полагаются на данные. Если такое знание недоступно, то выбрана гибкая или удобная форма F.

Зависимая переменная Y

Предположим теперь, что вектор неизвестных параметров β имеет длину k. Для выполнения регрессионного анализа пользователь должен предоставить информацию о зависимой переменной Y:

  • Если наблюдаются точки N данных вида (Y, X), где N < k, большинство классических подходов к регрессионному анализу не могут быть выполнены, так как система уравнений, определяющих модель регрессии в качестве недоопределенной, не имеет достаточного количества данных, чтобы восстановить β.
  • Если наблюдаются ровно N = K, а функция F является линейной, то уравнение Y = F (X, β) можно решить точно, а не приблизительно. Это сводится к решению набора N-уравнений с N-неизвестными (элементы β), который имеет единственное решение до тех пор, пока X линейно независим. Если F является нелинейным, решение может не существовать, или может существовать много решений.
  • Наиболее распространенной является ситуация, где наблюдается N > точки к данным. В этом случае имеется достаточно информации в данных, чтобы оценить уникальное значение для β, которое наилучшим образом соответствует данным, и модель регрессии, когда применение к данным можно рассматривать как переопределенную систему в β.

В последнем случае регрессионный анализ предоставляет инструменты для:

  • Поиска решения для неизвестных параметров β, которые будут, например, минимизировать расстояние между измеренным и предсказанным значением Y.
  • При определенных статистических предположениях, регрессионный анализ использует избыток информации для предоставления статистической информации о неизвестных параметрах β и предсказанные значения зависимой переменной Y.

Необходимое количество независимых измерений

Рассмотрим модель регрессии, которая имеет три неизвестных параметра: β 0 , β 1 и β 2 . Предположим, что экспериментатор выполняет 10 измерений в одном и том же значении независимой переменной вектора X. В этом случае регрессионный анализ не дает уникальный набор значений. Лучшее, что можно сделать, оценить среднее значение и стандартное отклонение зависимой переменной Y. Аналогичным образом измеряя два различных значениях X, можно получить достаточно данных для регрессии с двумя неизвестными, но не для трех и более неизвестных.

Если измерения экспериментатора проводились при трех различных значениях независимой переменной вектора X, то регрессионный анализ обеспечит уникальный набор оценок для трех неизвестных параметров в β.

В случае общей линейной регрессии приведенное выше утверждение эквивалентно требованию, что матрица X Т X обратима.

Статистические допущения

Когда число измерений N больше, чем число неизвестных параметров k и погрешности измерений ε i , то, как правило, распространяется затем избыток информации, содержащейся в измерениях, и используется для статистических прогнозов относительно неизвестных параметров. Этот избыток информации называется степенью свободы регрессии.

Основополагающие допущения

Классические предположения для регрессионного анализа включают в себя:

  • Выборка является представителем прогнозирования логического вывода.
  • Ошибка является случайной величиной со средним значением нуля, который является условным на объясняющих переменных.
  • Независимые переменные измеряются без ошибок.
  • В качестве независимых переменных (предикторов) они линейно независимы, то есть не представляется возможным выразить любой предсказатель в виде линейной комбинации остальных.
  • Ошибки являются некоррелированными, то есть ковариационная матрица ошибок диагоналей и каждый ненулевой элемент являются дисперсией ошибки.
  • Дисперсия ошибки постоянна по наблюдениям (гомоскедастичности). Если нет, то можно использовать метод взвешенных наименьших квадратов или другие методы.

Эти достаточные условия для оценки наименьших квадратов обладают требуемыми свойствами, в частности эти предположения означают, что оценки параметров будут объективными, последовательными и эффективными, в особенности при их учете в классе линейных оценок. Важно отметить, что фактические данные редко удовлетворяют условиям. То есть метод используется, даже если предположения не верны. Вариация из предположений иногда может быть использована в качестве меры, показывающей, насколько эта модель является полезной. Многие из этих допущений могут быть смягчены в более продвинутых методах. Отчеты статистического анализа, как правило, включают в себя анализ тестов по данным выборки и методологии для полезности модели.

Кроме того, переменные в некоторых случаях ссылаются на значения, измеренные в точечных местах. Там могут быть пространственные тенденции и пространственные автокорреляции в переменных, нарушающие статистические предположения. Географическая взвешенная регрессия - единственный метод, который имеет дело с такими данными.

В линейной регрессии особенностью является то, что зависимая переменная, которой является Y i , представляет собой линейную комбинацию параметров. Например, в простой линейной регрессии для моделирования n-точек используется одна независимая переменная, x i , и два параметра, β 0 и β 1 .

При множественной линейной регрессии существует несколько независимых переменных или их функций.

При случайной выборке из популяции ее параметры позволяют получить образец модели линейной регрессии.

В данном аспекте популярнейшим является метод наименьших квадратов. С помощью него получают оценки параметров, которые минимизируют сумму квадратов остатков. Такого рода минимизация (что характерно именно линейной регрессии) этой функции приводит к набору нормальных уравнений и набору линейных уравнений с параметрами, которые решаются с получением оценок параметров.

При дальнейшем предположении, что ошибка популяции обычно распространяется, исследователь может использовать эти оценки стандартных ошибок для создания доверительных интервалов и проведения проверки гипотез о ее параметрах.

Нелинейный регрессионный анализ

Пример, когда функция не является линейной относительно параметров, указывает на то, что сумма квадратов должна быть сведена к минимуму с помощью итерационной процедуры. Это вносит много осложнений, которые определяют различия между линейными и нелинейными методами наименьших квадратов. Следовательно, и результаты регрессионного анализа при использовании нелинейного метода порой непредсказуемы.

Расчет мощности и объема выборки

Здесь, как правило, нет согласованных методов, касающихся числа наблюдений по сравнению с числом независимых переменных в модели. Первое правило было предложено Доброй и Хардином и выглядит как N = t^n, где N является размер выборки, n - число независимых переменных, а t есть числом наблюдений, необходимых для достижения желаемой точности, если модель имела только одну независимую переменную. Например, исследователь строит модель линейной регрессии с использованием набора данных, который содержит 1000 пациентов (N). Если исследователь решает, что необходимо пять наблюдений, чтобы точно определить прямую (м), то максимальное число независимых переменных, которые модель может поддерживать, равно 4.

Другие методы

Несмотря на то что параметры регрессионной модели, как правило, оцениваются с использованием метода наименьших квадратов, существуют и другие методы, которые используются гораздо реже. К примеру, это следующие методы:

  • Байесовские методы (например, байесовский метод линейной регрессии).
  • Процентная регрессия, использующаяся для ситуаций, когда снижение процентных ошибок считается более целесообразным.
  • Наименьшие абсолютные отклонения, что является более устойчивым в присутствии выбросов, приводящих к квантильной регрессии.
  • Непараметрическая регрессия, требующая большого количества наблюдений и вычислений.
  • Расстояние метрики обучения, которая изучается в поисках значимого расстояния метрики в заданном входном пространстве.

Программное обеспечение

Все основные статистические пакеты программного обеспечения выполняются с помощью наименьших квадратов регрессионного анализа. Простая линейная регрессия и множественный регрессионный анализ могут быть использованы в некоторых приложениях электронных таблиц, а также на некоторых калькуляторах. Хотя многие статистические пакеты программного обеспечения могут выполнять различные типы непараметрической и надежной регрессии, эти методы менее стандартизированы; различные программные пакеты реализуют различные методы. Специализированное регрессионное программное обеспечение было разработано для использования в таких областях как анализ обследования и нейровизуализации.

1. Впервые термин «регрессия» был введен основателем биометрии Ф. Гальтоном (XIX в.), идеи которого были развиты его последователем К. Пирсоном.

Регрессионный анализ - метод статистической обработки данных, позволяющий измерить связь между одной или несколькими причинами (факторными признаками) и следствием (результативным признаком).

Признак - это основная отличительная черта, особенность изучаемого явления или процесса.

Результативный признак - исследуемый показатель.

Факторный признак - показатель, влияющий на значение результативного признака.

Целью регрессионного анализа является оценка функциональной зависимости среднего значения результативного признака (у ) от факторных (х 1 , х 2 , …, х n ), выражаемой в виде уравнения регрессии

у = f (x 1 , х 2 , …, х n ). (6.1)

Различают два вида регрессии: парную и множественную.

Парная (простая) регрессия - уравнение вида:

у = f (x ). (6.2)

Результативный признак при парной регрессии рассматривается как функция от одного аргумента, т.е. одного факторного признака.

Регрессионный анализ включает в себя следующие этапы:

· определение типа функции;

· определение коэффициентов регрессии;

· расчет теоретических значений результативного признака;

· проверку статистической значимости коэффициентов регрессии;

· проверку статистической значимости уравнения регрессии.

Множественная регрессия - уравнение вида:

у = f (x 1 , х 2 , …, х n ). (6.3)

Результативный признак рассматривается как функция от нескольких аргументов, т.е. много факторных признаков.

2. Для того чтобы правильно определить тип функции нужно на основании теоретических данных найти направление связи.

По направлению связи регрессия делится на:

· прямую регрессию, возникающую при условии, что с увеличением или уменьшением независимой величины «х» значения зависимой величины «у» также соответственно увеличиваются или уменьшаются;

· обратную регрессию, возникающую при условии, что с увеличением или уменьшением независимой величины «х» зависимая величина «у» соответственно уменьшается или увеличивается.

Для характеристики связей используют следующие виды уравнений парной регрессии:

· у=a+bx линейное;

· y=e ax + b – экспоненциальное;

· y=a+b/x – гиперболическое;

· y=a+b 1 x+b 2 x 2 – параболическое;

· y=ab x – показательное и др.

где a, b 1 , b 2 - коэффициенты (параметры) уравнения; у - результативный признак; х - факторный признак.

3. Построение уравнения регрессии сводится к оценке его коэффициентов (параметров), для этого используют метод наименьших квадратов (МНК).

Метод наименьших квадратов позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака «у »от теоретических «у х » минимальна, то есть

Параметры уравнения регрессии у=a+bх по методу наименьших квадратов оцениваются с помощью формул:

где а – свободный коэффициент, b - коэффициент регрессии, показывает на сколько изменится результативный признак «y » при изменении факторного признака «x » на единицу измерения.

4. Для оценки статистической значимости коэффициентов регрессии используется -критерий Стьюдента.

Схема проверки значимости коэффициентов регрессии:

1) Н 0: a =0, b =0 - коэффициенты регрессии незначимо отличаются от нуля.

Н 1: a≠ 0, b≠ 0 - коэффициенты регрессии значимо отличаются от нуля.

2) р =0,05 – уровень значимости.

где m b , m a - случайные ошибки:

; . (6.7)

4) t табл (р; f ),

где f =n-k- 1 - число степеней свободы (табличное значение), n - число наблюдений, k х».

5) Если , то отклоняется, т.е. коэффициент значимый.

Если , то принимается, т.е. коэффициент незначимый.

5. Для проверки правильности построенного уравнения регрессии применяется критерий Фишера.

Схема проверки значимости уравнения регрессии:

1) Н 0: уравнение регрессии незначимо.

Н 1: уравнение регрессии значимо.

2) р =0,05 – уровень значимости.

3) , (6.8)

где - число наблюдений; k - число параметров в уравнении при переменных «х» ; у - фактическое значение результативного признака; y x - теоретическое значение результативного признака; - коэффициент парной кореляции.

4) F табл (р; f 1 ; f 2 ),

где f 1 =k, f 2 =n-k-1- число степеней свободы (табличные значения).

5) Если F расч >F табл , то уравнение регрессии подобрано верно и может применяться на практике.

Если F расч , то уравнение регрессии подобрано неверно.

6. Основным показателем, отражающим меру качества регрессионного анализа, является коэффициент детерминации (R 2).

Коэффициент детерминации показывает, какая доля зависимой переменной «у » учтена в анализе и вызвана влиянием на нее факторов, включенных в анализ.

Коэффициент детерминации (R 2) принимает значения в промежутке . Уравнение регрессии является качественным, если R 2 ≥0,8.

Коэффициент детерминации равен квадрату коэффициента корреляции, т.е.

Пример 6.1. По следующим данным построить и проанализировать уравнение регрессии:

Решение.

1) Вычислить коэффициент корреляции: . Связь между признаками прямая и умеренная.

2) Построить уравнение парной линейной регрессии.

2.1) Составить расчетную таблицу.

Х у Ху х 2 у х (у-у х) 2
55,89 47,54 65,70
45,07 15,42 222,83
54,85 34,19 8,11
51,36 5,55 11,27
42,28 45,16 13,84
47,69 1,71 44,77
45,86 9,87 192,05
Сумма 159,45 558,55
Среднее 77519,6 22,78 79,79 2990,6

,

Уравнение парной линейной регрессии: у х =25,17+0,087х.

3) Найти теоретические значения «у x » путем подстановки в уравнение регрессии фактических значений «х ».

4) Построить графики фактических «у» и теоретических значений «у х » результативного признака (рисунок 6.1):r xy =0,47) и небольшим числом наблюдений.

7) Вычислить коэффициент детерминации: R 2 =(0,47) 2 =0,22. Построенное уравнение некачественное.

Т.к. вычисления при проведении регрессионного анализа достаточно объемные, рекомендуется пользоваться специальными программами («Statistica 10», SPSS и др.).

На рисунке 6.2 приведена таблица с результатами регрессионного анализа, проведенного с помощью программы «Statistica 10».

Рисунок 6.2. Результаты регрессионного анализа, проведенного с помощью программы «Statistica 10»

5. Литература:

1. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов / В.Е. Гмурман. - М.: Высшая школа, 2003. - 479 с.

2. Койчубеков Б.К. Биостатистика: Учебное пособие. - Алматы: Эверо, 2014. - 154 с.

3. Лобоцкая Н.Л. Высшая математика. / Н.Л. Лобоцкая, Ю.В. Морозов, А.А. Дунаев. - Мн.: Высшая школа, 1987. - 319 с.

4. Медик В.А., Токмачев М.С., Фишман Б.Б. Статистика в медицине и биологии: Руководство. В 2-х томах / Под ред. Ю.М. Комарова. Т. 1. Теоретическая статистика. - М.: Медицина, 2000. - 412 с.

5. Применение методов статистического анализа для изучения общественного здоровья и здравоохранения: учебное пособие / ред. Кучеренко В.З. - 4-е изд., перераб. и доп. – М.: ГЭОТАР - Медиа, 2011. - 256 с.

Регрессионный анализ

Регрессио́нный (линейный ) анализ - статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные - критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция ), а не причинно-следственные отношения.

Цели регрессионного анализа

  1. Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)
  2. Предсказание значения зависимой переменной с помощью независимой(-ых)
  3. Определение вклада отдельных независимых переменных в вариацию зависимой

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Математическое определение регрессии

Строго регрессионную зависимость можно определить следующим образом. Пусть , - случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений определено условное математическое ожидание

(уравнение регрессии в общем виде),

то функция называется регрессией величины Y по величинам , а её график - линией регрессии по , или уравнением регрессии .

Зависимость от проявляется в изменении средних значений Y при изменении . Хотя при каждом фиксированном наборе значений величина остаётся случайной величиной с определённым рассеянием.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении , используется средняя величина дисперсии Y при разных наборах значений (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

Метод наименьших квадратов (расчёт коэффициентов)

На практике линия регрессии чаще всего ищется в виде линейной функции (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов , когда минимизируется сумма квадратов отклонений реально наблюдаемых от их оценок (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):

(M - объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда .

Для решения задачи регрессионного анализа методом наименьших квадратов вводится понятие функции невязки :

Условие минимума функции невязки:

Полученная система является системой линейных уравнений с неизвестными

Если представить свободные члены левой части уравнений матрицей

а коэффициенты при неизвестных в правой части матрицей

то получаем матричное уравнение: , которое легко решается методом Гаусса . Полученная матрица будет матрицей, содержащей коэффициенты уравнения линии регрессии:

Для получения наилучших оценок необходимо выполнение предпосылок МНК (условий Гаусса−Маркова). В англоязычной литературе такие оценки называются BLUE (Best Linear Unbiased Estimators) − наилучшие линейные несмещенные оценки.

Интерпретация параметров регрессии

Параметры являются частными коэффициентами корреляции; интерпретируется как доля дисперсии Y, объяснённая , при закреплении влияния остальных предикторов, то есть измеряет индивидуальный вклад в объяснение Y. В случае коррелирующих предикторов возникает проблема неопределённости в оценках, которые становятся зависимыми от порядка включения предикторов в модель. В таких случаях необходимо применение методов анализа корреляционного и пошагового регрессионного анализа.

Говоря о нелинейных моделях регрессионного анализа, важно обращать внимание на то, идет ли речь о нелинейности по независимым переменным (с формальной точки зрения легко сводящейся к линейной регрессии), или о нелинейности по оцениваемым параметрам (вызывающей серьёзные вычислительные трудности). При нелинейности первого вида с содержательной точки зрения важно выделять появление в модели членов вида , , свидетельствующее о наличии взаимодействий между признаками , и т. д (см. Мультиколлинеарность).

См. также

Ссылки

  • www.kgafk.ru - Лекция на тему «Регрессионный анализ»
  • www.basegroup.ru - методы отбора переменных в регрессионные модели

Литература

  • Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. - 3-е изд. - М .: «Диалектика», 2007. - С. 912. - ISBN 0-471-17082-8
  • Устойчивые методы оценивания статистических моделей: Монография. - К. : ПП «Санспарель», 2005. - С. 504. - ISBN 966-96574-0-7 , УДК: 519.237.5:515.126.2, ББК 22.172+22.152
  • Радченко Станислав Григорьевич, Методология регрессионного анализа: Монография. - К. : "Корнийчук", 2011. - С. 376. - ISBN 978-966-7599-72-0

Wikimedia Foundation . 2010 .

При наличии корреляционной связи между факторными и результативными признаками врачам нередко приходится устанавливать, на какую величину может измениться значение одного признака при изменении другого на общепринятую или установленную самим исследователем единицу измерения.

Например, как изменится масса тела школьников 1-го класса (девочек или мальчиков), если рост их увеличится на 1 см. В этих целях применяется метод регрессионного анализа.

Наиболее часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

  1. Определение регрессии . Регрессия - функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

    С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

  2. Определение коэффициента регрессии . Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.
  3. Формула коэффициента регрессии . R у/х = r ху x (σ у / σ x)
    где R у/х - коэффициент регрессии;
    r ху - коэффициент корреляции между признаками х и у;
    (σ у и σ x) - среднеквадратические отклонения признаков x и у.

    В нашем примере ;
    σ х = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;
    σ у = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).
    Таким образом, R у/х - коэффициент регрессии.
    R у/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

  4. Уравнение регрессии . у = М у + R y/x (х - М x)
    где у - средняя величина признака, которую следует определять при изменении средней величины другого признака (х);
    х - известная средняя величина другого признака;
    R y/x - коэффициент регрессии;
    М х, М у - известные средние величины признаков x и у.

    Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, R у/х = 1,8 заболеваний, М х = -7°, М у = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.
    Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

  5. Назначение уравнения регрессии . Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график - линия регрессии , по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
  6. Сигма регрессии (формула) .
    где σ Rу/х - сигма (среднеквадратическое отклонение) регрессии;
    σ у - среднеквадратическое отклонение признака у;
    r ху - коэффициент корреляции между признаками х и у.

    Так, если σ у - среднеквадратическое отклонение числа простудных заболеваний = 8,65; r ху - коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен - 0,96, то

  7. Назначение сигмы регрессии . Дает характеристику меры разнообразия результативного признака (у).

    Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х 1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.
    При х 2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

    Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

  8. Данные, необходимые для расчета и графического изображения шкалы регрессии
    • коэффициент регрессии - R у/х;
    • уравнение регрессии - у = М у + R у/х (х-М x);
    • сигма регрессии - σ Rx/y
  9. Последовательность расчетов и графического изображения шкалы регрессии .
    • определить коэффициент регрессии по формуле (см. п. 3). Например, следует определить, насколько в среднем будет меняться масса тела (в определенном возрасте в зависимости от пола), если средний рост изменится на 1 см.
    • по формуле уравнения регрессии (см п. 4) определить, какой будет в среднем, например, масса тела (у, у 2 , у 3 ...)* для определеного значения роста (х, х 2 , х 3 ...).
      ________________
      * Величину "у" следует рассчитывать не менее чем для трех известных значений "х".

      При этом средние значения массы тела и роста (М х, и М у) для определенного возраста и пола известны

    • вычислить сигму регрессии, зная соответствующие величины σ у и r ху и подставляя их значения в формулу (см. п. 6).
    • на основании известных значений х 1 , х 2 , х 3 и соответствующих им средних значений у 1 , у 2 у 3 , а также наименьших (у - σ rу/х)и наибольших (у + σ rу/х) значений (у) построить шкалу регрессии.

      Для графического изображения шкалы регрессии на графике сначала отмечаются значения х, х 2 , х 3 (ось ординат), т.е. строится линия регрессии, например зависимости массы тела (у) от роста (х).

      Затем в соответствующих точках у 1 , y 2 , y 3 отмечаются числовые значения сигмы регрессии, т.е. на графике находят наименьшее и наибольшее значения у 1 , y 2 , y 3 .

  10. Практическое использование шкалы регрессии . Разрабатываются нормативные шкалы и стандарты, в частности по физическому развитию. По стандартной шкале можно дать индивидуальную оценку развития детей. При этом физическое развитие оценивается как гармоничное, если, например, при определенном росте масса тела ребенка находится в пределах одной сигмы регрессии к средней расчетной единице массы тела - (у) для данного роста (x) (у ± 1 σ Ry/x).

    Физическое развитие считается дисгармоничным по массе тела, если масса тела ребенка для определенного роста находится в пределах второй сигмы регрессии: (у ± 2 σ Ry/x)

    Физическое развитие будет резко дисгармоничным как за счет избыточной, так и за счет недостаточной массы тела, если масса тела для определенного роста находится в пределах третьей сигмы регрессии (у ± 3 σ Ry/x).

По результатам статистического исследования физического развития мальчиков 5 лет известно, что их средний рост (х) равен 109 см, а средняя масса тела (у) равна 19 кг. Коэффициент корреляции между ростом и массой тела составляет +0,9, средние квадратические отклонения представлены в таблице.

Требуется:

  • рассчитать коэффициент регрессии;
  • по уравнению регрессии определить, какой будет ожидаемая масса тела мальчиков 5 лет при росте, равном х1 = 100 см, х2 = 110 см, х3= 120 см;
  • рассчитать сигму регрессии, построить шкалу регрессии, результаты ее решения представить графически;
  • сделать соответствующие выводы.

Условие задачи и результаты ее решения представлены в сводной таблице.

Таблица 1

Условия задачи Pезультаты решения задачи
уравнение регрессии сигма регрессии шкала регрессии (ожидаемая масса тела (в кг))
М σ r ху R у/x х У σ R x/y y - σ Rу/х y + σ Rу/х
1 2 3 4 5 6 7 8 9 10
Рост (х) 109 см ± 4,4см +0,9 0,16 100см 17,56 кг ± 0,35 кг 17,21 кг 17,91 кг
Масса тела (y) 19 кг ± 0,8 кг 110 см 19,16 кг 18,81 кг 19,51 кг
120 см 20,76 кг 20,41 кг 21,11 кг

Решение .

Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка. Для этого следует восстановить перпендикуляр к линии регрессии.

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. - 464 с.
  2. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2007. - 512 с.
  3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. - М.: Медицина, 2003. - 368 с.
  4. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). - СПб, 1998. -528 с.
  5. Кучеренко В.З., Агарков Н.М. и др.Социальная гигиена и организация здравоохранения (Учебное пособие) - Москва, 2000. - 432 с.
  6. С. Гланц. Медико-биологическая статистика. Пер с англ. - М., Практика, 1998. - 459 с.

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

    Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.

    Определение зависимых и независимых (объясняющих) переменных.

    Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.

    Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).

    Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)

    Оценка точности регрессионного анализа.

    Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.

    Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

    положительная линейная регрессия (выражается в равномерном росте функции);

    положительная равноускоренно возрастающая регрессия;

    положительная равнозамедленно возрастающая регрессия;

    отрицательная линейная регрессия (выражается в равномерном падении функции);

    отрицательная равноускоренно убывающая регрессия;

    отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

    Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.

    Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммамиостатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а -8.3в .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значениеR-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно,множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

Переменная X 1

* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты выводаостатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными нарис. 8.3 . Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3. Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4 .

Таблица 8.4. Результаты прогнозирования переменной Y

Y(прогнозируемое)

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

    построили уравнение регрессии;

    установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;

    установили направление связи между переменными;

    оценили качество полученной регрессионной прямой;

    смогли увидеть отклонения расчетных данных от данных исходного набора;

    предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

В этой работе мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, каксреднее значение ,медиана ,максимум ,минимум и другие характеристики вариации данных.

Также было кратко рассмотрено понятие выбросов . Рассмотренные характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.