Метод математической индукции калькулятор онлайн. Метод математической индукции Математическая индукция неравенства

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k) Ю А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k) Ю A(k+1)

Доказать, что 1+3+5+…+(2n-1)=n 2 .

  • 1) Имеем n=1=1 2 . Следовательно, утверждение верно при n=1, т.е. А(1) истинно
  • 2) Докажем, что А(k) Ю A(k+1)

Пусть k-любое натуральное число и пусть утверждение справедливо для n=k, т.е

1+3+5+…+(2k-1)=k 2

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

  • 1+3+5+…+(2k+1)=(k+1) 2 В самом деле,
  • 1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2

Итак, А(k) Ю А(k+1). На основании принципа математической индукции заключаем, что предположение А(n) истинно для любого n О N

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х № 1

  • 1) При n=1 получаем
  • 1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) истинно

  • 2) Пусть k-любое натуральное число и пусть формула верна при n=k,
  • 1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1)

Докажем, что тогда выполняется равенство

  • 1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1) В самом деле
  • 1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1)

Итак, А(k) Ю A(k+1). На основании принципа математической индукции заключаем, что формула верна для любого натурального числа n

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2

Решение: 1) При n=3 утверждение справедливо, ибо в треугольнике

А 3 =3(3-3)/2=0 диагоналей; А 2 А(3) истинно

2) Предположим, что во всяком выпуклом k-угольнике имеет А 1 ся А k =k(k-3)/2 диагоналей. А k Докажем, что тогда в выпуклом А k+1 (k+1)-угольнике число диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-угольник. Проведём в нём диагональ A 1 A k . Чтобы подсчитать общее число диагоналей этого (k+1)-угольника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k

Таким образом,

G k+1 =G k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2

Итак, А(k) Ю A(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утверждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2

=(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого натурального n

Доказать, что для любого натурального n справедливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4

Решение: 1) Пусть n=1

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1. Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4

3) Докажем истинность этого утверждения для n=k+1, т.е

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4

Из приведённого доказательства видно, что утверждение верно при n=k+1, следовательно, равенство верно при любом натуральном n

Доказать, что

((2 3 +1)/(2 3 -1)) ґ ((3 3 +1)/(3 3 -1)) ґ … ґ ((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2

Решение: 1) При n=2 тождество выглядит:

  • (2 3 +1)/(2 3 -1)=(3 ґ 2 ґ 3)/2(2 2 +2+1), т.е. оно верно
  • 2) Предположим, что выражение верно при n=k
  • (2 3 +1)/(2 3 -1) ґ … ґ (k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1)
  • 3) Докажем верность выражения при n=k+1
  • (((2 3 +1)/(2 3 -1)) ґ … ґ ((k 3 +1)/(k 3 -1))) ґ (((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1)) ґ ((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2 ґ

ґ ((k+1) 2 +(k+1)+1)

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математической индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3) для любого натурального n

Решение: 1) Пусть n=1, тогда

  • 1 3 -2 3 =-1 3 (4+3); -7=-7
  • 2) Предположим, что n=k, тогда
  • 1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3)
  • 3) Докажем истинность этого утверждения при n=k+1
  • (1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3)

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для любого натурального n.

Доказать верность тождества

(1 2 /1 ґ 3)+(2 2 /3 ґ 5)+…+(n 2 /(2n-1) ґ (2n+1))=n(n+1)/2(2n+1) для любого натурального n

  • 1) При n=1 тождество верно 1 2 /1 ґ 3=1(1+1)/2(2+1)
  • 2) Предположим, что при n=k
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1) ґ (2k+1))=k(k+1)/2(2k+1)
  • 3) Докажем, что тождество верно при n=k+1
  • (1 2 /1 ґ 3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1)) ґ ((k/2)+((k+1)/(2k+3)))=(k+1)(k+2) ґ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1)

Из приведённого доказательства видно, что утверждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23 ґ 133

Но (23 ґ 133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

  • 2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка
  • 3) Докажем, что в таком случае (11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле
  • 11 k+3 +12 2л+3 =11 ґ 11 k+2 +12 2 ґ 12 2k+1 =11 ґ 11 k+2 +

+(11+133) ґ 12 2k+1 =11(11 k+2 +12 2k+1)+133 ґ 12 2k+1

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без остатка по предположению, а во втором одним из множителей выступает 133. Итак, А(k) Ю А(k+1). В силу метода математической индукции утверждение доказано

Доказать, что при любом n 7 n -1 делится на 6 без остатка

  • 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно
  • 2) Предположим, что при n=k 7 k -1 делится на 6 без остатка
  • 3) Докажем, что утверждение справедливо для n=k+1

X k+1 =7 k+1 -1=7 ґ 7 k -7+6=7(7 k -1)+6

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слагаемым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном натуральном n делится на 11.

1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остатка.

Значит, при n=1 утверждение верно

  • 2) Предположим, что при n=k X k =3 3k-1 +2 4k-3 делится на 11 без остатка
  • 3) Докажем, что утверждение верно для n=k+1

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3 ґ 3 3k-1 +2 4 ґ 2 4k-3 =

27 ґ 3 3k-1 +16 ґ 2 4k-3 =(16+11) ґ 3 3k-1 +16 ґ 2 4k-3 =16 ґ 3 3k-1 +

11 ґ 3 3k-1 +16 ґ 2 4k-3 =16(3 3k-1 +2 4k-3)+11 ґ 3 3k-1

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположению, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма делится на 11 без остатка при любом натуральном n. В силу метода математической индукции утверждение доказано.

Доказать, что 11 2n -1 при произвольном натуральном n делится на 6 без остатка

  • 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утверждение верно
  • 2) Предположим, что при n=k 1 2k -1 делится на 6 без остатка
  • 11 2(k+1) -1=121 ґ 11 2k -1=120 ґ 11 2k +(11 2k -1)

Оба слагаемых делятся на 6 без остатка: первое содержит кратное 6-ти число 120, а второе делится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка

Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка

  • 1. При n=0
  • 3 3 -1=26 делится на 26
  • 2. Предположим, что при n=k
  • 3 3k+3 -1 делится на 26
  • 3. Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -1=27 ґ 3 3k+3 -1=26 ґ 3 3л+3 +(3 3k+3 -1) -делится на 26

Теперь проведём доказательство утверждения, сформулированного в условии задачи

  • 1) Очевидно, что при n=1 утверждение верно
  • 3 3+3 -26-27=676
  • 2) Предположим, что при n=k выражение 3 3k+3 -26k-27 делится на 26 2 без остатка
  • 3) Докажем, что утверждение верно при n=k+1
  • 3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27)

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода математической индукции утверждение доказано

Доказать, что если n>2 и х>0, то справедливо неравенство (1+х) n >1+n ґ х

  • 1) При n=2 неравенство справед-ливо, так как
  • (1+х) 2 =1+2х+х 2 >1+2х

Значит, А(2) истинно

  • 2) Докажем, что А(k) Ю A(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство
  • (1+х) k >1+k ґ x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1) ґ x

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k ґ x)(1+x)

Рассмотрим правую часть последнего неравенства; имеем

(1+k ґ x)(1+x)=1+(k+1) ґ x+k ґ x 2 >1+(k+1) ґ x

В итоге получаем, что (1+х) k+1 >1+(k+1) ґ x

Итак, А(k) Ю A(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого n> 2

Доказать, что справедливо неравенство (1+a+a 2) m > 1+m ґ a+(m(m+1)/2) ґ a 2 при а> 0

Решение: 1) При m=1

  • (1+а+а 2) 1 > 1+а+(2/2) ґ а 2 обе части равны
  • 2) Предположим, что при m=k
  • (1+a+a 2) k >1+k ґ a+(k(k+1)/2) ґ a 2
  • 3) Докажем, что при m=k+1 не-равенство верно
  • (1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k ґ a+

+(k(k+1)/2) ґ a 2)=1+(k+1) ґ a+((k(k+1)/2)+k+1) ґ a 2 +

+((k(k+1)/2)+k) ґ a 3 +(k(k+1)/2) ґ a 4 > 1+(k+1) ґ a+

+((k+1)(k+2)/2) ґ a 2

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математической индукции, неравенство справедливо для любого натурального m

Доказать, что при n>6 справедливо неравенство 3 n >n ґ 2 n+1

Перепишем неравенство в виде (3/2) n >2n

  • 1. При n=7 имеем 3 7 /2 7 =2187/128>14=2 ґ 7 неравенство верно
  • 2. Предположим, что при n=k (3/2) k >2k
  • 3) Докажем верность неравенства при n=k+1
  • 3 k+1 /2 k+1 =(3 k /2 k) ґ (3/2)>2k ґ (3/2)=3k>2(k+1)

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравенство справедливо для любого натурального n

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n)

  • 1) При n=3 неравенство верно
  • 1+(1/2 2)+(1/3 2)=245/180
  • 2. Предположим, что при n=k
  • 1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k)
  • 3) Докажем справедливость неравенства при n=k+1
  • (1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1) Ы

Ы (1/(k+1) 2)+(1/k+1)<1/k Ы (k+2)/(k+1) 2 <1/k Ы

Ы k(k+2)<(k+1) 2 Ы k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1)

В силу метода математической индукции неравенство доказано.

Во многих разделах математики приходится доказывать истинность утверждения, зависящего от , т.е. истинность высказывания p(n) для "n ÎN (для любого n ÎN p(n) верно).

Часто это удается доказать методом математической индукции.

В основе этого метода лежит принцип математической индукции. Обычно он выбирается в качестве одной из аксиом арифметики и, следовательно, принимается без доказательства. Согласно принципу математической индукции предложение p(n) считается истинным для всех натуральных значений переменной, если выполнены два условия:

1. Предложение p(n) истинно для n = 1.

2. Из предложения, что p(n) истинно для n = k (k — произвольное натуральное число) следует, что оно истинно для n = k + 1.

Под методом математической индукции понимают следующий способ доказательства

1. Проверяют истинность утверждения для n = 1 – база индукции.

2. Предполагают, что утверждение верно для n = k – индуктивное предположение.

3. Доказывают, что тогда оно верно и для n = k + 1 индуктивный переход.

Иногда предложение p(n) оказывается верным не для всех натуральных n , а начиная с некоторого для n = n 0. В этом случае в базе индукции проверяется истинность p(n) при n = n 0.

Пример 1. Пусть . Доказать, что

1. База индукции: при n = 1 по определению S 1 = 1 и по формуле получаем один результат. Утверждение верно.

n = k и .

n = k + 1. Докажем, что .

Действительно, в силу индуктивного предположения

Преобразуем это выражение

Индуктивный переход доказан.

Замечание. Полезно записать, что дано (индуктивное предположение) и что нужно доказать!

Пример 2. Доказать

1. База индукции. При n = 1, утверждение, очевидно, верно.

2. Индуктивное предположение. Пусть n = k и

3. Индуктивный переход. Пусть n = k + 1. Докажем:

Действительно, возведем правую сторону в квадрат как сумму двух чисел:

Используя индуктивное предположение и формулу суммы арифметической прогрессии: , получим

Пример 3. Доказать неравенство

1. Базой индукции в этом случае является проверка истинности утверждения для , т.е. необходимо проверить неравенство . Для этого достаточно возвести неравенство в квадрат: или 63 < 64 – неравенство верно.

2. Пусть неравенство верно для , т.е.

3. Пусть , докажем:

Используем предположение индукции

Зная как должна выглядеть правая сторона в доказываемом неравенстве выделим эту часть

Остается установить, что лишний множитель не превосходит единицы. Действительно,

Пример 4. Доказать, что при любом натуральном число оканчивается цифрой .

1. Наименьшее натуральное , с которого справедливо утверждение, равно . .

2. Пусть при число оканчивается на . Это означает, что это число можно записать в виде , где – какое-то натуральное число. Тогда .

3. Пусть . Докажем, что оканчивается на . Используя полученное представление, получим

Последнее число имеет ровно единиц.

Приложение

1.4. Метод математической индукции

Как известно, математические утверждения (теоремы) должны быть обоснованы, доказаны. Мы сейчас познакомимся с одним из методов доказательства - методом математической индукции.

В широком смысле индукция - это способ рассуждений, позволяющий переходить от частных утверждений к общим. Обратный переход, от общих утверждений к частным, называется дедукцией.

Дедукция всегда приводит к правильным выводам. Например, нам известен общий результат: все целые числа, оканчивающиеся на нуль, делятся на 5. Отсюда, конечно, можно сделать вывод, что и любое конкретное число, оканчивающееся на 0, например 180, делится на 5.

В то же время индукция может привести к неверным выводам. Например, замечая, что число 60 делится на числа 1, 2, 3, 4, 5, 6, мы не вправе сделать вывод о том, что 60 делится вообще на любое число.

Метод математической индукции позволяет во многих случаях строго доказывать справедливость общего утверждения P(n), в формулировку которого входит натуральное число n.

Применение метода включает 3 этапа.

1) База индукции: проверяем справедливость утверждения P(n) для n = 1 (или для другого, частного значения n, начиная с которого предполагается справедливость P(n)).

2) Предположение индукции: предполагаем, что P(n) справедливо при n = k.

3) Шаг индукции: используя предположение, доказываем, что P(n) справедливо для n = k + 1.

В результате можно сделать вывод о справедливости P(n) для любого n ∈ N. Действительно, для n = 1 утверждение верно (база индукции). А следовательно, верно и для n = 2, так как переход от n = 1 к n = 2 обоснован (шаг индукции). Применяя шаг индукции снова и снова, получаем справедливость P(n) для n = 3, 4, 5, . . ., т. е. справедливость P(n) для всех n.

Пример 14. Сумма первых n нечётных натуральных чисел равна n2: 1 + 3 + 5 + …

+ (2n — 1) = n2.

Доказательство проведём методом математической индукции.

1) База: при n=1 слева только одно слагаемое, получаем: 1 = 1.

Утверждение верно.

2) Предположение: предполагаем, что для некоторого k справедливо равенство: 1 + 3 + 5 + … + (2k — 1) = k2.

Решение задач про вероятность попаданий при выстрелах

Общая постановка задачи следующая:

Вероятность попадания в цель при одном выстреле равна $p$. Производится $n$ выстрелов. Найти вероятность того, что цель будет поражена в точности $k$ раз (будет $k$ попаданий).

Применяем формулу Бернулли и получаем:

$$ P_n(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k} = C_n^k \cdot p^k \cdot q^{n-k}.

Здесь $C_n^k$ — число сочетаний из $n$ по $k$.

Если в задаче речь идет о нескольких стрелках с разными вероятностями попадания в цель, теорию, примеры решения и калькулятор вы можете найти здесь.

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач о выстрелах в схеме Бернулли, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о попаданиях в цель в серии выстрелов

Рассмотрим несколько типовых примеров.

Пример 1. Произвели 7 выстрелов. Вероятность попадания при одном выстреле равна 0,705. Найти вероятность того, что при этом будет ровно 5 попаданий.

Получаем, что в задаче идет речь о повторных независимых испытаниях (выстрелах по мишени), всего производится $n=7$ выстрелов, вероятность попадания при каждом $p=0,705$, вероятность промаха $q=1-p=1-0,705=0,295$.

Нужно найти, что будет ровно $k=5$ попаданий. Подставляем все в формулу (1) и получаем: $$ P_7(5)=C_{7}^5 \cdot 0,705^5 \cdot 0,295^2 = 21\cdot 0,705^5 \cdot 0,295^2= 0,318. $$

Пример 2. Вероятность попадания в мишень при одном выстреле равна 0,4.

По мишени производится четыре независимых выстрела. Найти вероятность того, что будет хотя бы одно попадание в мишень.

Изучаем задачу и выписываем параметры: $n=4$ (выстрела), $p=0,4$ (вероятность попадания), $k \ge 1$ (будет хотя бы одно попадание).

Используем формулу для вероятности противоположного события (нет ни одного попадания):

$$ P_4(k \ge 1) = 1-P_4(k \lt 1) = 1-P_4(0)= $$ $$ =1-C_{4}^0 \cdot 0,4^0 \cdot 0,6^4 =1- 0,6^4=1- 0,13=0,87. $$

Вероятность попасть хотя бы один раз из четырех равна 0,87 или 87%.

Пример 3. Вероятность поражения мишени стрелком равна 0,3.

Найти вероятность того, что при 6 выстрелах мишень будет поражена от трех до шести раз.

В отличие от предыдущих задач, здесь нужно найти вероятность того, что число попаданий будет находится в некотором интервале (а не равно в точности какому-то числу). Но формула используется прежняя.

Найдем вероятность того, что мишень будет поражена от трех до шести раз, то есть будет или 3, или 4, или 5, или 6 попаданий.

Данные вероятности вычислим по формуле (1):

$$ P_6(3)=C_{6}^3 \cdot 0,3^3\cdot 0,7^3 = 0,185. $$ $$ P_6(4)=C_{6}^4 \cdot 0,3^4\cdot 0,7^2 = 0,06. $$ $$ P_6(5)=C_{6}^5 \cdot 0,3^5\cdot 0,7^1 = 0,01. $$ $$ P_6(6)=C_{6}^6 \cdot 0,3^6\cdot 0,7^0 = 0,001.

Так как события несовместные, искомая вероятность может быть найдена по формуле сложения вероятностей: $$ P_6(3 \le k \le 6)=P_6(3)+P_6(4)+P_6(5)+P_6(6)=$$ $$ = 0,185+0,06+0,01+0,001=0,256.$$

Пример 4. Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Обозначим вероятность попадания в цель при одном выстреле. Введем событие:
$A = $ (Из четырех выстрелов хотя бы один попадет в цель),
а также противоположное ему событие, которое можно записать как:
$\overline{A} = $ (Все 4 выстрела будут мимо цели, ни одного попадания).

Запишем формулу для вероятности события $A$.

Выпишем известные значения: $n=4$, $P(A)=0,9984$. Подставляем в формулу (1) и получаем:

$$ P(A)=1-P(\overline{A})=1-P_4(0)=1-C_{4}^0 \cdot p^0 \cdot (1-p)^4=1-(1-p)^4=0,9984.

Решаем получившееся уравнение:

$$ 1-(1-p)^4=0,9984,\\ (1-p)^4=0,0016,\\ 1-p=0,2,\\ p=0,8. $$

Итак, вероятность попадания в цель при одном выстреле равна 0,8.

Спасибо, что читаете и делитесь с другими

Полезные ссылки

Найдите готовые задачи в решебнике:

Онлайн-расчеты по формуле Бернулли

Решение неравенства с помощью калькулятора

Неравенство в математике относится ко всем уравнениям, где «=» заменяется любым из следующих значков: \ [> \] \ [\ geq \] \ [

* линейный;

* квадратный;

* дробный;

* индикативный;

* тригонометрический;

* логарифмический.

В зависимости от этого неравенства называются линейными, частичными и т. Д.

Вы должны знать об этих признаках:

* неравенства с значком больше (>) или меньше (

* Неравенства с значками, которые больше или равны \ [\ geq \] меньше или равно [\ leq \], называются непрофессиональными;

* значок не тот же \ [\ ne \] один, но необходимо постоянно разрешать случаи с этим значком.

Такое неравенство решается посредством преобразований тождеств.

Также прочитайте нашу статью «Решите полное решение для онлайн-уравнения»

Предположим, что выполнено неравенство следующего:

Мы решаем его так же, как линейное уравнение, но следует внимательно следить за признаком неравенства.

Сначала мы переносим членов из неизвестного влево, от известного до правого, меняя символы на противоположное:

Затем мы разделим обе стороны на -4 и изменим знак неравенства на противоположное:

Это ответ на это уравнение.

Где я могу решить неравенство в Интернете?

Вы можете решить уравнение на нашем сайте pocketteacher.ru.

Калькулятор неравенства Бернулли

В считанные секунды бесплатное онлайн-решение для спасения решит онлайн-уравнение любой сложности. Все, что вам нужно сделать, это ввести ваши данные в спасение. Вы также можете просмотреть видео-инструкции и узнать, как решить уравнение на нашем веб-сайте.

И если у вас есть вопросы, вы можете задать их в нашей группе Vkontakte: pocketteacher. Присоединяйтесь к нашей группе, мы будем рады вам помочь.

Метод полной математической индукции

Решение уравнений/ Дифференциальные уравнения

© Контрольная работа РУ — калькуляторы онлайн

Решение дифференциальных уравнений

Введите дифф.

уравнение:

С помощью калькулятора вы можете решить дифференциальные уравнения различной сложности.

Примеры решаемых дифференциальных уравнений

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Математическая индукция— один из методов доказательства. Используется, чтобы доказать истинность некоего утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1.

Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход) . Тогда, если мы толкнём первую косточку (это база индукции) , то все косточки в ряду упадут.

Я выбрал данную тему для исследования, потому что в школьной программе методу математической индукции уделяют мало времени, ученик узнает поверхностную информацию, которая поможет ему получить лишь общее представление о данном методе, но чтобы углубленно изучить эту тему потребуется саморазвитие. Действительно будет полезно подробнее узнать о данной теме, так как это расширяет кругозор ученика и помогает в решении сложных задач в жизни.

Цели работы:

    Познакомиться с методом математической индукции;

    систематизировать знания по данной теме и применить её при решении математических задач и доказательстве теорем;

    обосновать и наглядно показать практическое значение метода математической индукции как необходимого фактора для решения задач.

Задачи работы:

    Проанализировать литературу и обобщить знания по данной теме;

    разобраться в принципе метода математической индукции;

    исследовать применение метода математической индукции к решению задач ив жизни;

    сформулировать выводы и обобщить изученный материал по проделанной работе.

Основная часть

История возникновения индукции

Правила логических рассуждений были сформулированы два с половиной тысячелетия назад древнегреческим учёным Аристотелем. Он создал полный список простейших правильных рассуждений, силлогизмов - «кирпичиков» логики, одновременно указав типичные рассуждения, очень похожие на правильные, однако неправильные.

Осознание метода математической индукции как отдельного важного метода восходит к Блезу Паскалю и Герсониду, хотя отдельные случаи применения встречаются ещё в античные времена у Прокла и Эвклида. Современное название метода было введено де Морганом в 1838 году.

Только к концу XIX века сложился стандарт требований к логической строгости, остающейся и до настоящего времени господствующими в практической работе математиков над развитием отдельных математических теорий.

Индукция (induction - по-латыни наведение ).

Индукция наглядно иллюстрируется известной легендой о том, как Исаак Ньютон сформулировал закон всемирного тяготения после того, как ему на голову упало яблоко.Ещё пример из физики: в таком явлении, как электромагнитная индукция, электрическое поле создает, «наводит» магнитное поле. «Ньютоново яблоко» - типичный пример ситуации, когда один или несколько частных случаев, то есть наблюдения , «наводят» на общее утверждение, общий вывод делается на основании частных случаев. Индуктивный метод является основным для получения общих закономерностей и в естественных, и в гуманитарных науках. Но он имеет весьма существенный недостаток: на основании частных примеров может быть сделан неверный вывод. Гипотезы, возникающие при частных наблюдениях, не всегда являются правильными.

Полная и неполная индукция

Индуктивное умозаключение - такая форма абстрактного мышления, в которой мысль развивается от знания меньшей степени общности к знанию большей степени общности, а заключение, вытекающее из посылок, носит преимущественно вероятностный характер.

Учитывая зависимость отхарактера исследования различают полную и неполную индукцию.

Полная индукция - это умозаключение, в ко-тором общее заключение делается на базе изу-чения всех предметов или явлений данного клас-са. В этом случае рассуждение имеет следующую схему:

К примеру, установление того, что каждый из документов, необходимых для оценки готовности уголовного дела для передачи в суд, имеется, позво-ляет с полным основанием делать вывод, что дело следует передавать в суд

Полная индукция дает достоверное знание, так как заключение делается только о тех предметах или явлениях, которые перечислены в посылках. Но область применения полной индукции весьма ограничена.

Полную индукцию можно применить, когда появляется возможность иметь дело с замкнутым классом предметов, число элементов в котором яв-ляется конечным и легко обозримым. Она предполагает наличие следующих условий:

а) точное знание числа предметов или явлений, подлежащих изу-чению;

б) убеждение, что признак принадлежит каждому элементу класса;

в) небольшое число элементов изучаемого класса;

г) целесообразность и рациональность.

Вот почему полная индукция чаще всего используется при расследова-нии уголовных дел, связанных с недостачей материальных ценностей. Здесь вывод осуществляется на базе подсчета всех без исключения содержащих-ся на складе или в хранилище предметов путем инвентаризации.

При этом в большинстве случаев юристу приходится иметь дело с такими однородными фактами, количество которых не ограничено или которые не все доступны в настоящее время для непосредственного изучения. Вот поче-му в таких случаях прибегают к использованию неполной индукции, кото-рая на практике применяется значительно шире, чем полная.

Неполная индукция - это умозаключение, в котором на базе повторя-емости признака у некоторых явлений определенного класса делается вывод о принадлежности этого признака всему классу явлений. Неполная индук-ция имеет следующую схему рассуждения:

Неполная индукция часто применяется в реальной жизни, так как позво-ляет делать заключения на базе анализа определенной части данного класса предметов, экономит время и силы человека. Правда, в данном случае мы получим вероятностное заключение, ĸᴏᴛᴏᴩᴏᴇ исходя из вида не-полной индукции будет колебаться от менее вероятностного к более вероят-ностному.

По способам обоснования заключения различают следующие виды не-полной индукции:

НЕПОЛНАЯ ИНДУКЦИЯ

популярная

Метод математической индукции

Метод математической индукции можно сравнить с прогрессом: мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению логически развивать свою мысль, а значит, сама природа предначертала ему размышлять индуктивно.

Алгоритм:

    база - показываем, что доказываемое утверждение верно для некоторых простейших частных случаев n=1 ;

    предположение - предполагаем, что утверждение доказано для первых k случаев;

    шаг - в этом предположении доказываем утверждение для случая n=k+1;

    вывод - утверждение верно для всех случаев, то есть для всех n.

Заметим, что Методом математической индукции можно решать не все задачи, а только задачи, параметризованные некоторой переменной. Эта переменная называется переменной индукции .

Задачи

Как видно из прошлого материала, индукция бывает не только в математике. Иногда называют «неполной индукцией» переход от частных примеров к общим закономерностям. Бывает индукция и в физике (катушки индуктивности, явление самоиндукции). Но в этой работе мы говорим только о математической (полной) индукции.

Что это такое, проще всего объяснить на примерах. Разберём несколько задач.

Задача 1 . Несколько прямых делят плоскость на части. Доказать, что можно раскрасить эти части в белый и чёрный цвет так, чтобы соседние части (имеющие общий отрезок границы) были разного цвета (как на рисунке).

Решение. Заметим прежде всего, что не любую «карту» (части | страны, разделённые линиями границ) можно так раскрасить. Например, если в одной точке сходятся три страны и верхняя страна, скажем, белая, то две оставшиеся страны должны быть чёрными, хотя граничат между собой.

Но для плоскости, разрезанной на части прямыми, такого случиться не может, и мы сейчас это докажем. Пусть прямая только одна. Тогда всё просто: одна полуплоскость белая, другая | чёрная (левый рисунок). Если прямых две, получатся четыре части (средний рисунок).

Посмотрим, что произойдёт, если мы на рисунке с двумя прямыми и четырьмя частями проведём третью прямую. Она поделит три страны из четырёх; при этом появятся новые участки границы, по обе стороны которых цвет один и тот же (правый рисунок).

Как же быть? С одной стороны от новой прямой поменяем цвета (белый сделаем чёрным и наоборот). Тогда новая прямая будет всюду разделять участки разного цвета. Другими словами, с одной стороны от прямой мы берём позитив карты, а с другой негатив.

(Придирчивый читатель спросит: а почему старые границы раскрашены правильно? Это легко понять: в позитивной части цвета не изменились,

а в негативной оба цвета заменились на противоположные.)

Теперь ясно, что тем же способом можно добавить ещё одну прямую (перекрасив карту с одной стороны от неё), затем ещё одну и так далее | пока мы не получим нужную нам карту. Задача решена.

Задача 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 3, так как минимальное число углов в треугольнике равно 3.

1) При п = 3 наше утверждение принимает вид: S 3 = π. Но сумма внутренних углов любого треугольника действительно равна π. Поэтому при п = 3 формула (1) верна.

2) Пусть эта формула верна при n=k , то есть S k = (k - 2)π, где k > 3. Докажем, что в таком случае имеет место и формула:S k+ 1 = (k - 1)π.

Пусть A 1 A 2 ... A k A k+ 1 —произвольный выпуклый (k + 1) -угольник (рис. 338).

Соединив точки A 1 и A k , мы получим выпуклый k -угольник A 1 A 2 ... A k — 1 A k . Очевидно, что сумма углов (k + 1) -угольника A 1 A 2 ... A k A k+ 1 равна сумме углов k -угольника A 1 A 2 ... A k плюс сумма углов треугольника A 1 A k A k+ 1 . Но сумма углов k -угольника A 1 A 2 ... A k по предположению равна (k - 2)π, а сумма углов треугольника A 1 A k A k+ 1 равна π. Поэтому

S k+ 1 = S k + π = (k - 2)π + π = (k - 1)π.

Итак, оба условия принципа математической индукции выполняются, и потому формула (1) верна при любом натуральном п > 3.

Задача 4 .На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Восстановим затем отброшенную окружность и по одну сторону от нее (например, внутри) изменим цвет каждой области на противоположный (т.е. черный - на белый и наоборот); легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками.

Задача 5 .Для того чтобы карту можно было правильно раскрасить двумя красками, необходимо и достаточно, чтобы в каждой ее вершине сходилось четное число границ.

Необходимость этого условия очевидно, так как если в какой-нибудь вершине карты сходится нечетное число границ, то уже страны, окружающие эту вершину, нельзя правильно раскрасить двумя красками.

Для доказательства достаточности условия проведем индукцию по числу границ карты.

Для карты с двумя границами утверждение очевидно.

Предположим, что утверждение справедливо для любой карты, в каждой вершине которой сходится четное число границ и общее число границ которой не превосходит n, и пусть дана карта S, имеющая n+1 границ и удовлетворяющая тому же условию. Начиная с произвольной вершины А карты S, станем двигаться в произвольном направлении вдоль границ карты. Ввиду конечности числа вершин карты мы вернемся в конце концов в одну из уже проведенных вершин (карта не имеет крайних вершин, потому что на ней нет неразделяющих границ) и сможем выделить некоторый не имеющий самопересечений замкнутый контур, состоящий из границ карты. Удалив этот контур, мы получим контур S 1 с меньшим числом границ, в каждой вершине которой также сходится четное число границ (потому что в каждой вершине карты S отбрасывается четное число границ - 0 или 2). В силу индуктивного предположения карту S 1 можно правильно раскрасить двумя красками.

Восстановив отброшенный контур и изменив все цвета с одной стороны от него (например, внутри), мы и получим правильную раскраску карты S.

Задача 6 из жизни .Имеется лестница, все ступени которой одинаковы. Требуется указать минимальное число положений, которые гарантировали бы возможность «забраться» на любую по номеру ступеньку.

Все согласны с тем, что должно быть условие. Мы должны уметь забраться на первую ступень. Далее должны уметь с 1-ой ступеньки забраться на вторую. Потом во второй - на третью и т.д. на n-ую ступеньку. Конечно, в совокупности же «n» утверждений гарантирует нм то, что мы сможем добраться до n-ой ступеньки.

Посмотрим теперь на 2, 3,…., n положение и сравним их друг с другом. Легко заметить, что все они имеют одну и ту же структуру: если мы добрались до k ступеньки, то можем забраться на (k+1) ступеньку. Отсюда становится естественной такая аксиома для справедливости утверждений, зависящих от «n»: если предложение А(n), в котором n - натуральное число, выполняется при n=1 и из того, что оно выполняется при n=k (где k - любое натуральное число), следует, что оно выполняется и для n=k+1, то предположение А(n) выполняется для любого натурального числа n.

Заключение

Итак, индукция (от лат. inductio — наведение, побуждение) — одна из форм умозаключения, приём исследования, применяя который от знания отдельных фактов приходят к общим положениям. Индукция бывает полная и неполная. Метод неполной индукции состоит в переходе к универсальной формулировке после проверки истинности частных формулировок для отдельных, но не всех значений n. Применяя полную индукцию, мы лишь тогда считаем себя вправе объявить об истинности универсальной формулировки, когда убедились в её истинности для каждого без исключения значения n. Метод математической индукции - метод доказательства, основанный на принципе математической индукции. Он позволяет в поисках общего закона испытывать гипотезы, отбрасывать ложные и утверждать истинные.

Метод математической индукции является одной из теоретических основ при решении задач на суммирование, доказательстве тождеств, доказательстве и решении неравенств, решении вопроса делимости, при изучении свойств числовых последовательностей, при решении геометрических задач и т. д.

Знакомясь с методом математической индукции, я изучал специальную литературу, консультировалась с педагогом, анализировал данные и решения задач, пользовался ресурсами Интернета, выполнял необходимые вычисления.

Вывод: в ходе работы я узнал, чтобы решать задачи методом математической индукции нужно знать и понимать основной принцип математической индукции.

Достоинством метода математической индукции является его универсальность, так как с помощью этого метода можно решить многие задачи. Недостатком неполной индукции является то, что порой она приводит к ошибочным выводам.

Обобщив и систематизировав знания по математической индукции, я убедился в необходимости знаний по теме «метод математической индукции». Кроме того эти знания повышают интерес к математике, как к науке. Так же в ходе работы приобрел навыки решения задач по использованию метода математической индукции. Считаю, что эти навыки помогут мне в будущем.

Список использованной литературы:

    www.mccme.ru - задачи;

    www.studfiles.ru - задачи;

    dic.academic.ru - энциклопедия.

    А. Шень. Математическая индукция. — МЦНМО, 2004. — 36 с.

    Википедия- свободная энциклопедия.

    Л. И. Головина, И. М. Яглом. Индукция в геометрии. — Физматгиз, 1961. — Т. 21. — 100 с. — (Популярные лекции по математике).

Метод доказательства, о котором будет идти речь в данном пункте, основан на одной из аксиом натурального ряда.

Аксиома индукции. Пусть дано предложение, зависящее от переменной п, вместо которой можно подставлять любые натуральные числа. Обозначим его А(п). Пусть также предложение А верно для числа 1 и из того, что А верно для числа к , следует, что А верно для числа к+ 1. Тогда предложение А верно для всех натуральных значений п.

Символическая запись аксиомы:

Здесь пик- переменные по множеству натуральных чисел. Из аксиомы индукции получается следующее правило вывода:

Итак, для того чтобы доказать истинность предложения А, можно вначале доказать два утверждения: истинность высказывания А( 1), а также следствие А(к) => А(к+ 1).

Учитывая сказанное выше, опишем сущность метода

математической индукции.

Пусть требуется доказать, что предложение А(п) верно для всех натуральных п. Доказательство разбивается на два этапа.

  • 1- й этап. База индукции. Берем в качестве значения п число 1 и проверяем, что А( 1) есть истинное высказывание.
  • 2- й этап. Индуктивный переход. Доказываем, что при любом натуральном числе к верна импликация: если А{к ), то А(к+ 1).

Индуктивный переход начинается словами: «Возьмем произвольное натуральное число к, такое, что А(к)», или «Пусть для натурального числа к верно А(к)». Вместо слова «пусть» часто говорят «предположим, что...».

После этих слов буква к обозначает некий фиксированный объект, для которого выполняется соотношение А{к). Далее из А(к) выводим следствия, то есть строим цепочку предложений А(к) 9 Р , Pi, ..., Р„ = А(к+ 1), где каждое предложение Р, является истинным высказыванием или следствием предыдущих предложений. Последнее предложение Р„ должно совпадать с А(к+ 1). Отсюда заключаем: из А{к) следует А(к+ ).

Выполнение индуктивного перехода можно расчленить на два действия:

  • 1) Индуктивное предположение. Здесь мы предполагаем, что А к переменной н.
  • 2) На основе предположения доказываем, что А верно для числа?+1.

Пример 5.5.1. Докажем, что число п+п является четным при всех натуральных п.

Здесь А(п) = «п 2 +п - четное число». Требуется доказать, что А - тождественно истинный предикат. Применим метод математической индукции.

База индукции. Возьмем л=1. Подставим в выражение п +//, получим n 2 +n = I 2 + 1 = 2 - четное число, то есть /1(1) - истинное высказывание.

Сформулируем индуктивное предположение А{к) = «Число к 2 +к - четное». Можно сказать так: «Возьмем произвольное натуральное число к такое, что к 2 +к есть четное число».

Выведем отсюда утверждение А(кА-) = «Число (к+ 1) 2 +(?+1) - четное».

По свойствам операций выполним преобразования:

Первое слагаемое полученной суммы четно по предположению, второе четно по определению (так как имеет вид 2п). Значит, сумма есть четное число. Предложение А(к+ 1) доказано.

По методу математической индукции делаем вывод: предложение А(п) верно для всех натуральных п.

Конечно, нет необходимости каждый раз вводить обозначение А(п). Однако все же рекомендуется отдельной строкой формулировать индуктивное предположение и то, что требуется из него вывести.

Заметим, что утверждение из примера 5.5.1 можно доказать без использования метода математической индукции. Для этого достаточно рассмотреть два случая: когда п четно и когда п нечетно.

Многие задачи на делимость решаются методом математической индукции. Рассмотрим более сложный пример.

Пример 5.5.2. Докажем, что число 15 2и_| +1 делится на 8 при всех натуральных п.

Бача индукции. Возьмем /1=1. Имеем: число 15 2|_| +1 = 15+1 = 16 делится на число 8.

, что для некоторого

натурального числа к число 15 2 * ’+1 делится на 8.

Докажем , что тогда число а = 15 2(ЖН +1 делится 8.

Преобразуем число а:

По предположению, число 15 2А1 +1 делится на 8, значит, все первое слагаемое делится на 8. Второе слагаемое 224=8-28 также делится на 8. Таким образом, число а как разность двух чисел, кратных 8, делится на 8. Индуктивный переход обоснован.

На основе метода математической индукции заключаем, что для всех натуральных п число 15 2 " -1 -*-1 делится на 8.

Сделаем некоторые замечания по решенной задаче.

Доказанное утверждение можно сформулировать немного по-другому: «Число 15”"+1 делится на 8 при любых нечетных натуральных /и».

Во-вторых, из доказанного общего утверждения можно сделать частный вывод, доказательство которого может быть дано как отдельная задача: число 15 2015 +1 делится на 8. Поэтому иногда бывает полезно обобщить задачу, обозначив какое-то конкретное значение буквой, а затем применить метод математической индукции.

В самом общем понимании термин «индукция» означает, что на основе частных примеров делают общие выводы. Например, рассмотрев некоторые примеры сумм четных чисел 2+4=6, 2+8=10, 4+6=10, 8+12=20, 16+22=38, делаем вывод о том, что сумма любых двух четных чисел есть четное число.

В общем случае вот такая индукция может привести к неверным выводам. Приведем пример подобного неправильного рассуждения.

Пример 5.5.3. Рассмотрим число а = /г+я+41 при натуральном /?.

Найдем значения а при некоторых значениях п.

Пусть п= I. Тогда а = 43 - простое число.

Пусть /7=2. Тогда а = 4+2+41 = 47 - простое.

Пусть л=3. Тогда а = 9+3+41 = 53 - простое.

Пусть /7=4. Тогда а = 16+4+41 = 61 - простое.

Возьмите в качестве значений п следующие за четверкой числа, например 5, 6, 7, и убедитесь, что число а будет простым.

Делаем вывод: «При всех натуральных /? число а будет простым».

В результате получилось ложное высказывание. Приведем контрпример: /7=41. Убедитесь, что при данном п число а будет составным.

Термин «математическая индукция» несет в себе более узкий смысл, так как применение этого метода позволяет получить всегда верное заключение.

Пример 5.5.4. Получим на основе индуктивных рассуждений формулу общего члена арифметической прогрессии. Напомним, что арифметической профессией называется числовая последовательность, каждый член которой отличается от предыдущего на одно и то же число, называемое разностью прогрессии. Для того чтобы однозначно задать арифметическую профессию, нужно указать ее первый член а и разность d.

Итак, по определению а п+ = а п + d, при п> 1.

В школьном курсе математики, как правило, формула общего члена арифметической профессии устанавливается на основе частных примеров, то есть именно по индукции.

Если /7=1, ТО С 7| = Я|, ТО есть Я| = tf|+df(l -1).

Если /7=2, то я 2 = a+d, то есть а = Я|+*/(2-1).

Если /7=3, то я 3 = я 2 + = (a+d)+d = a+2d, то есть я 3 = Я|+(3-1).

Если /7=4, то я 4 = я 3 +*/ = (a+2d)+d = Я1+3 и т.д.

Приведенные частные примеры позволяют выдвинуть гипотезу: формула общего члена имеет вид а„ = a+(n-)d для всех /7>1.

Докажем эту формулу методом математической индукции.

База индукции проверена в предыдущих рассуждениях.

Пусть к - такой номер, при котором я* - a+{k-)d (индуктивное предположение ).

Докажем , что я*+! = a+((k+)-)d, то есть я*+1 = a x +kd.

По определению я*+1 = аь+d. а к = я | +(к -1 )d , значит, ац+ = я i +(А:-1)^/+с/ = я | +(А-1+1 )d = я i +kd , что и требовалось доказать (для обоснования индуктивного перехода).

Теперь формула я„ = a+{n-)d доказана для любого натурального номера /;.

Пусть дана некоторая последовательность я ь я 2 , я,„ ... (не

обязательно арифметическая или геометрическая прогрессия). Часто возникают задачи, где требуется суммировать первые п членов этой последовательности, то есть задать сумму Я|+я 2 +...+я и формулой, которая позволяет находить значения этой суммы, не вычисляя члены последовательности.

Пример 5.5.5. Докажем, что сумма первых п натуральных чисел равна

/?(/7 + 1)

Обозначим сумму 1+2+...+/7 через S n . Найдем значения S n для некоторых /7.

Заметим: для того чтобы найти сумму S 4 , можно воспользоваться вычисленным ранее значением 5 3 , так как 5 4 = 5 3 +4.

п(п +1)

Если подставить рассмотренные значения /? в терм ---то

получим, соответственно, те же суммы 1, 3, 6, 10. Эти наблюдения

. _ п(п + 1)

наталкивают на мысль, что формулу S „=--- можно использовать при

любом //. Докажем эту гипотезу методом математической индукции.

База индукции проверена. Выполним индуктивный переход.

Предположим , что формула верна для некоторого натурального числа

, к(к + 1)

к, то сеть сумма первых к натуральных чисел равна ----.

Докажем , что сумма первых (?+1) натуральных чисел равна

  • (* + !)(* + 2)

Выразим?*+1 через S k . Для этого в сумме S*+i сгруппируем первые к слагаемых, а последнее слагаемое запишем отдельно:

По индуктивному предположению S k = Значит, чтобы найти

сумму первых (?+1) натуральных чисел, достаточно к уже вычисленной

. „ к(к + 1) _ .. ..

сумме первых к чисел, равной ---, прибавить одно слагаемое (к+1).

Индуктивный переход обоснован. Тем самым выдвинутая вначале гипотеза доказана.

Мы привели доказательство формулы S n = п ^ п+ методом

математической индукции. Конечно, есть и другие доказательства. Например, можно записать сумму S, в порядке возрастания слагаемых, а затем в порядке убывания слагаемых:

Сумма слагаемых, стоящих в одном столбце, постоянна (в одной сумме каждое следующее слагаемое уменьшается на 1, а в другой увеличивается на 1) и равна (/г+1). Поэтому, сложив полученные суммы, будем иметь п слагаемых, равных (и+1). Итак, удвоенная сумма S„ равна п(п+ 1).

Доказанная формула может быть получена как частный случай формулы суммы первых п членов арифметической прогрессии.

Вернемся к методу математической индукции. Отметим, что первый этап метода математической индукции (база индукции) всегда необходим. Отсутствие этого этапа может привести к неверному выводу.

Пример 5.5.6. «Докажем» предложение: «Число 7"+1 делится на 3 при любом натуральном я».

«Предположим, что при некотором натуральном значении к число 7*+1 делится на 3. Докажем, что число 7 ж +1 делится на 3. Выполним преобразования:

Число 6 очевидно делится на 3. Число 1 к + делится на 3 по индуктивному предположению, значит, число 7-(7* + 1) также делится на 3. Поэтому разность чисел, делящихся на 3, будет также делиться на 3.

Предложение доказано».

Доказательство исходного предложения неверно, несмотря на то что индуктивный переход выполнен правильно. Действительно, при п= I имеем число 8, при п=2 - число 50, ..., и ни одно из этих чисел нс делится на 3.

Сделаем важное замечание об обозначении натурального числа при выполнении индуктивного перехода. При формулировке предложения А(п) буквой п мы обозначали переменную, вместо которой можно подставлять любые натуральные числа. При формулировке индуктивного предположения мы обозначали значение переменной буквой к. Однако очень часто вместо новой буквы к используют ту же самую букву, которой обозначается переменная. Это никак не влияет на структуру рассуждений при выполнении индуктивного перехода.

Рассмотрим еще несколько примеров задач, для решения которых можно применить метод математической индукции.

Пример 5.5.7. Найдем значение суммы

В задании переменная п не фигурирует. Однако рассмотрим последовательность слагаемых:

Обозначим S, = а+а 2 +...+а„. Найдем S „ при некоторых п. Если /1= 1, то S, =а, = -.

Если п= 2. то S, = а, + а? = - + - = - = -.

Если /?=3, то S-, = a,+a 7 + я, = - + - + - = - + - = - = -.

3 1 - 3 2 6 12 3 12 12 4

Можете самостоятельно вычислить значения S„ при /7 = 4; 5. Возникает

естественное предположение: S n = -- при любом натуральном /7. Докажем

это методом математической индукции.

База индукции проверена выше.

Выполним индуктивный переход , обозначая произвольно взятое

значение переменной п этой же буквой, то есть докажем, что из равенства

0 /7 _ /7 +1

S n =-следует равенство S , =-.

/7+1 /7 + 2

Предположим, что верно равенство S = - П -.

Выделим в сумме S„+ первые п слагаемых:

Применив индуктивное предположение, получим:

Сокращая дробь на (/7+1), будем иметь равенство S n +1 - , Л

Индуктивный переход обоснован.

Тем самым доказано, что сумма первых п слагаемых

  • 1 1 1 /7 ^
  • - +-+...+- равна -. Теперь возвратимся к первоначальной
  • 1-2 2-3 /?(// +1) /7 + 1

задаче. Для ее решения достаточно взять в качестве значения п число 99.

Тогда сумма -!- + -!- + -!- + ...+ --- будет равна числу 0,99.

1-2 2-3 3-4 99100

Постарайтесь вычислить данную сумму другим способом.

Пример 5.5.8. Докажем, что производная суммы любого конечного числа дифференцируемых функций равна сумме производных этих функций.

Пусть переменная /? обозначает количество данных функций. В случае, когда дана только одна функция, под суммой понимается именно эта функция. Поэтому если /7=1, то утверждение очевидно истинно:/" = /".

Предположим , что утверждение справедливо для набора из п функций (здесь снова вместо буквы к взята буква п), то есть производная суммы п функций равна сумме производных.

Докажем , что производная суммы (я+1) функций равна сумме производных. Возьмем произвольный набор, состоящий из п+ дифференцируемой функции: /1,/2, . Представим сумму этих функций

в виде g+f„+ 1, где g=f +/г + ... +/ t - сумма п функций. По индуктивному предположению производная функции g равна сумме производных: g" = ft +ft + ... +ft. Поэтому имеет место следующая цепочка равенств:

Индуктивный переход выполнен.

Таким образом, исходное предложение доказано для любого конечного числа функций.

В ряде случаев требуется доказать истинность предложения А(п) для всех натуральных я, начиная с некоторого значения с. Доказательство методом математической индукции в таких случаях проводится по следующей схеме.

База индукции. Доказываем, что предложение А верно для значения п, равного с.

Индуктивный переход. 1) Предполагаем, что предложение А верно для некоторого значения к переменной /?, которое больше либо равно с.

2) Доказываем, что предложение А истинно для значения /?, равного

Снова заметим, что вместо буквы к часто оставляют обозначение переменной п. В этом случае индуктивный переход начинают словами: «Предположим, что для некоторого значения п>с верно А(п). Докажем, что тогда верно А(п+ 1)».

Пример 5.5.9. Докажем, что при всех натуральных п> 5 верно неравенство 2” > и 2 .

База индукции. Пусть п= 5. Тогда 2 5 =32, 5 2 =25. Неравенство 32>25 истинно.

Индуктивный переход. Предположим , что имеет место неравенство 2 П >п 2 для некоторого натурального числа п> 5. Докажем , что тогда 2" +| > (п+1) 2 .

По свойствам степеней 2” +| = 2-2". Так как 2">я 2 (по индуктивному предположению), то 2-2" > 2я 2 (I).

Обоснуем, что 2п 2 больше (я+1) 2 . Это можно сделать разными способами. Достаточно решить квадратное неравенство 2х 2 >(х+) 2 во множестве действительных чисел и увидеть, что все натуральные числа, большие либо равные 5, являются его решениями.

Мы поступим следующим образом. Найдем разность чисел 2п 2 и (я+1) 2:

Так как и > 5, то я+1 > 6, значит, (я+1) 2 > 36. Поэтому разность больше 0. Итак, 2я 2 > (я+1) 2 (2).

По свойствам неравенств из (I) и (2) следует, что 2*2" > (я+1) 2 , что и требовалось доказать для обоснования индуктивного перехода.

На основе метода математической индукции заключаем, что неравенство 2" > я 2 истинно для любых натуральных чисел я.

Рассмотрим еще одну форму метода математической индукции. Отличие заключается в индуктивном переходе. Для его осуществления требуется выполнить два шага:

  • 1) предположить, что предложение А(п) верно при всех значениях переменной я, меньших некоторого числар;
  • 2) из выдвинутого предположения вывести, что предложение А(п) справедливо и для числар.

Таким образом, индуктивный переход требует доказательства следствия: [(Уи?) А{п)] => А(р). Заметим, что следствие можно переписать в виде: [(Уп^р) А(п)] => А(р+ 1).

В первоначальной формулировке метода математической индукции при доказательстве предложения А(р) мы опирались только на «предыдущее» предложение А(р- 1). Данная здесь формулировка метода позволяет выводить А(р), считая, что все предложения А(п), где я меньшер , истинны.

Пример 5.5.10. Докажем теорему: «Сумма внутренних углов любого я-угольника равна 180°(я-2)».

Для выпуклого многоугольника теорему легко доказать, если разбить его диагоналями, проведенными из одной вершины, на треугольники. Однако для невыпуклого многоугольника такая процедура может быть невозможна.

Докажем теорему для произвольного многоугольника методом математической индукции. Будем считать известным следующее утверждение, которое, строго говоря, требует отдельного доказательства: «В любом //-угольнике существует диагональ, лежащая целиком во внугренней его части».

Вместо переменной // можно подставлять любые натуральные числа, которые больше либо равны 3. Для п=Ъ теорема справедлива, так как в треугольнике сумма углов равна 180°.

Возьмем некоторый /7-угольник (р> 4) и предположим, что сумма углов любого //-угольника, где // р, равна 180°(//-2). Докажем, что сумма углов //-угольника равна 180°(//-2).

Проведем диагональ //-угольника, лежащую внутри него. Она разобьет //-угольник на два многоугольника. Пусть один из них имеет к сторон, другой - к 2 сторон. Тогда к+к 2 -2 = р, так как полученные многоугольники имеют общей стороной проведенную диагональ, не являющуюся стороной исходного //-угольника.

Оба числа к и к 2 меньше //. Применим к полученным многоугольникам индуктивное предположение: сумма углов А]-угольника равна 180°-(?i-2), а сумма углов? 2 -угольника равна 180°-(Аг 2 -2). Тогда сумма углов //-угольника будет равна сумме этих чисел:

180°*(Аг|-2)-н 180°(Аг2-2) = 180 о (Аг,-ьАг 2 -2-2) = 180°-(//-2).

Индуктивный переход обоснован. На основе метода математической индукции теорема доказана для любого //-угольника (//>3).