58 element of the periodic table scanword. Periodic system of Mendeleev. Chemical elements of the periodic system. Transition from atomic weights to nuclear charge

Don't lose. Subscribe and receive a link to the article in your email.

Anyone who went to school remembers that one of the required subjects to study was chemistry. She could like it, or she could not like it - it does not matter. And it is likely that much knowledge in this discipline has already been forgotten and is not applied in life. However, everyone probably remembers the table of chemical elements of D. I. Mendeleev. For many, it has remained a multi-colored table, where certain letters are inscribed in each square, denoting the names of chemical elements. But here we will not talk about chemistry as such, and describe hundreds of chemical reactions and processes, but we will talk about how the periodic table appeared in general - this story will be of interest to any person, and indeed to all those who want interesting and useful information .

A little background

Back in 1668, the outstanding Irish chemist, physicist and theologian Robert Boyle published a book in which many myths about alchemy were debunked, and in which he talked about the need to search for indecomposable chemical elements. The scientist also gave a list of them, consisting of only 15 elements, but allowed the idea that there may be more elements. This became the starting point not only in the search for new elements, but also in their systematization.

A hundred years later, the French chemist Antoine Lavoisier compiled a new list, which already included 35 elements. 23 of them were later found to be indecomposable. But the search for new elements continued by scientists around the world. And the main role in this process was played by the famous Russian chemist Dmitry Ivanovich Mendeleev - he was the first to put forward the hypothesis that there could be a relationship between the atomic mass of elements and their location in the system.

Thanks to painstaking work and comparison of chemical elements, Mendeleev was able to discover a relationship between elements in which they can be one, and their properties are not something taken for granted, but are a periodically repeating phenomenon. As a result, in February 1869, Mendeleev formulated the first periodic law, and already in March, his report “The relationship of properties with the atomic weight of elements” was submitted to the Russian Chemical Society by the historian of chemistry N. A. Menshutkin. Then in the same year, Mendeleev's publication was published in the journal Zeitschrift fur Chemie in Germany, and in 1871 a new extensive publication of the scientist dedicated to his discovery was published by another German journal Annalen der Chemie.

Creating a Periodic Table

By 1869, the main idea had already been formed by Mendeleev, and in a fairly short time, but he could not formalize it into any sort of ordered system that clearly displays what was what, for a long time he could not. In one of the conversations with his colleague A. A. Inostrantsev, he even said that everything had already worked out in his head, but he could not bring everything to the table. After that, according to Mendeleev's biographers, he began painstaking work on his table, which lasted three days without a break for sleep. All sorts of ways to organize the elements in a table were sorted out, and the work was complicated by the fact that at that time science did not yet know about all the chemical elements. But, despite this, the table was still created, and the elements were systematized.

Legend of Mendeleev's dream

Many have heard the story that D. I. Mendeleev dreamed of his table. This version was actively distributed by the aforementioned colleague of Mendeleev, A. A. Inostrantsev, as a funny story with which he entertained his students. He said that Dmitry Ivanovich went to bed and in a dream he clearly saw his table, in which all the chemical elements were arranged in the right order. After that, the students even joked that 40° vodka was discovered in the same way. But there were still real prerequisites for the sleep story: as already mentioned, Mendeleev worked on the table without sleep and rest, and Inostrantsev once found him tired and exhausted. In the afternoon, Mendeleev decided to take a break, and some time later, he woke up abruptly, immediately took a piece of paper and depicted a ready-made table on it. But the scientist himself refuted this whole story with a dream, saying: “I’ve been thinking about it for maybe twenty years, and you think: I was sitting and suddenly ... it’s ready.” So the legend of the dream may be very attractive, but the creation of the table was only possible through hard work.

Further work

In the period from 1869 to 1871, Mendeleev developed the ideas of periodicity, to which the scientific community was inclined. And one of the important stages of this process was the understanding that any element in the system should be located based on the totality of its properties in comparison with the properties of other elements. Based on this, and also based on the results of research in the change of glass-forming oxides, the chemist managed to amend the values ​​of the atomic masses of some elements, including uranium, indium, beryllium and others.

Of course, Mendeleev wanted to fill the empty cells that remained in the table as soon as possible, and in 1870 he predicted that chemical elements unknown to science would soon be discovered, the atomic masses and properties of which he was able to calculate. The first of these were gallium (discovered in 1875), scandium (discovered in 1879) and germanium (discovered in 1885). Then the forecasts continued to be realized, and eight more new elements were discovered, among them: polonium (1898), rhenium (1925), technetium (1937), francium (1939) and astatine (1942-1943). By the way, in 1900, D. I. Mendeleev and the Scottish chemist William Ramsay came to the conclusion that the elements of the zero group should also be included in the table - until 1962 they were called inert, and after - noble gases.

Organization of the periodic system

Chemical elements in the table of D. I. Mendeleev they are arranged in rows, in accordance with the increase in their mass, and the length of the rows is chosen so that the elements in them have similar properties. For example, noble gases such as radon, xenon, krypton, argon, neon, and helium do not easily react with other elements, and also have low chemical activity, which is why they are located in the far right column. And the elements of the left column (potassium, sodium, lithium, etc.) react perfectly with other elements, and the reactions themselves are explosive. To put it simply, within each column, the elements have similar properties, varying from one column to the next. All elements up to No. 92 are found in nature, and with No. 93 artificial elements begin, which can only be created in the laboratory.

In its original version, the periodic system was understood only as a reflection of the order existing in nature, and there were no explanations why everything should be that way. And only when quantum mechanics appeared, the true meaning of the order of elements in the table became clear.

Creative Process Lessons

Speaking about what lessons of the creative process can be drawn from the entire history of the creation of the periodic table of D. I. Mendeleev, we can cite as an example the ideas of an English researcher in the field of creative thinking Graham Wallace and the French scientist Henri Poincaré. Let's take them briefly.

According to Poincaré (1908) and Graham Wallace (1926), there are four main stages in creative thinking:

  • Preparation- the stage of formulating the main task and the first attempts to solve it;
  • Incubation- the stage during which there is a temporary distraction from the process, but work on finding a solution to the problem is carried out at a subconscious level;
  • insight- the stage at which the intuitive solution is found. Moreover, this solution can be found in a situation that is absolutely not relevant to the task;
  • Examination- the stage of testing and implementation of the solution, at which the verification of this solution and its possible further development takes place.

As we can see, in the process of creating his table, Mendeleev intuitively followed these four stages. How effective this is can be judged by the results, i.e. because the table was created. And given that its creation was a huge step forward not only for chemical science, but for the whole of humanity, the above four stages can be applied both to the implementation of small projects and to the implementation of global plans. The main thing to remember is that not a single discovery, not a single solution to a problem can be found on its own, no matter how much we want to see them in a dream and no matter how much we sleep. In order to succeed, whether it is the creation of a table of chemical elements or the development of a new marketing plan, you need to have certain knowledge and skills, as well as skillfully use your potential and work hard.

We wish you success in your endeavors and successful implementation of your plans!

For some time now, in TheBat (it is not clear for what reason), the built-in certificate database for SSL has ceased to work correctly.

When checking the post, an error pops up:

Unknown CA certificate
The server did not present a root certificate in the session and the corresponding root certificate was not found in the address book.
This connection cannot be secret. Please
contact your server administrator.

And it is offered a choice of answers - YES / NO. And so every time you shoot mail.

Solution

In this case, you need to replace the S/MIME and TLS implementation standard with Microsoft CryptoAPI in TheBat!

Since I needed to merge all the files into one, I first converted all doc files into a single pdf file (using the Acrobat program), and then transferred it to fb2 through an online converter. You can also convert files individually. Formats can be absolutely any (source) and doc, and jpg, and even zip archive!

The name of the site corresponds to the essence:) Online Photoshop.

Update May 2015

I found another great site! Even more convenient and functional for creating a completely arbitrary collage! This site is http://www.fotor.com/ru/collage/ . Use on health. And I will use it myself.

Faced in life with the repair of electric stoves. I already did a lot of things, learned a lot, but somehow I had little to do with tiles. It was necessary to replace the contacts on the regulators and burners. The question arose - how to determine the diameter of the burner on the electric stove?

The answer turned out to be simple. No need to measure anything, you can calmly determine by eye what size you need.

The smallest burner is 145 millimeters (14.5 centimeters)

Medium burner is 180 millimeters (18 centimeters).

And finally the most large burner is 225 millimeters (22.5 centimeters).

It is enough to determine the size by eye and understand what diameter you need a burner. When I didn’t know this, I was soaring with these sizes, I didn’t know how to measure, which edge to navigate, etc. Now I'm wise :) I hope it helped you too!

In my life I faced such a problem. I think I'm not the only one.

He drew on the work of Robert Boyle and Antoine Lavouzier. The first scientist advocated the search for indecomposable chemical elements. 15 of those Boyle listed back in 1668.

Lavuzier added 13 more to them, but a century later. The search dragged on because there was no coherent theory of the connection between the elements. Finally, Dmitry Mendeleev entered the "game". He decided that there is a connection between the atomic mass of substances and their place in the system.

This theory allowed the scientist to discover dozens of elements without discovering them in practice, but in nature. This was placed on the shoulders of posterity. But now it's not about them. Let's dedicate the article to the great Russian scientist and his table.

The history of the creation of the periodic table

Mendeleev table began with the book "Relationship of properties with the atomic weight of the elements." The work was issued in the 1870s. At the same time, the Russian scientist spoke to the chemical society of the country and sent the first version of the table to colleagues from abroad.

Before Mendeleev, 63 elements were discovered by various scientists. Our compatriot began by comparing their properties. First of all, he worked with potassium and chlorine. Then, he took up the group of metals of the alkaline group.

The chemist got a special table and element cards to lay them out like solitaire, looking for the right matches and combinations. As a result, an insight came: - the properties of the components depend on the mass of their atoms. So, elements of the periodic table lined up in ranks.

The discovery of the maestro of chemistry was the decision to leave voids in these ranks. The periodicity of the difference between atomic masses led the scientist to assume that not all elements are known to mankind yet. The gaps in weight between some of the "neighbors" were too large.

That's why, periodic table of Mendeleev became like a chessboard, with an abundance of "white" cells. Time has shown that they really were waiting for their "guests". They, for example, became inert gases. Helium, neon, argon, krypton, radioact and xenon were discovered only in the 30s of the 20th century.

Now about myths. It is widely believed that periodic table of chemistry appeared to him in a dream. These are the intrigues of university teachers, more precisely, one of them - Alexander Inostrantsev. This is a Russian geologist who lectured at the St. Petersburg University of Mining.

Inostrantsev knew Mendeleev and visited him. Once, exhausted by the search, Dmitry fell asleep right in front of Alexander. He waited until the chemist wakes up and saw how Mendeleev grabs a piece of paper and writes down the final version of the table.

In fact, the scientist simply did not have time to do this before Morpheus captured him. However, Inostrantsev wanted to amuse his students. Based on what he saw, the geologist came up with a bike, which grateful listeners quickly spread to the masses.

Features of the periodic table

Since the first version in 1969 ordinal periodic table improved many times. So, with the discovery of noble gases in the 1930s, it was possible to derive a new dependence of the elements - on their serial numbers, and not on the mass, as the author of the system stated.

The concept of "atomic weight" was replaced by " atomic number". It was possible to study the number of protons in the nuclei of atoms. This number is the serial number of the element.

Scientists of the 20th century also studied the electronic structure of atoms. It also affects the periodicity of elements and is reflected in later editions. periodic tables. Photo The list shows that the substances in it are arranged as the atomic weight increases.

The fundamental principle was not changed. Mass increases from left to right. At the same time, the table is not single, but divided into 7 periods. Hence the name of the list. Period is a horizontal row. Its beginning is typical metals, the end is elements with non-metallic properties. The decline is gradual.

There are big and small periods. The first ones are at the beginning of the table, there are 3 of them. It opens a list with a period of 2 elements. Following are two columns, in which there are 8 items. The remaining 4 periods are large. The 6th is the longest, it has 32 elements. In the 4th and 5th there are 18 of them, and in the 7th - 24.

Can be counted how many elements in the table Mendeleev. There are 112 titles in total. Names. There are 118 cells, but there are variations of the list with 126 fields. There are still empty cells for undiscovered elements that do not have names.

Not all periods fit on one line. Large periods consist of 2 rows. The amount of metals in them outweighs. Therefore, the bottom lines are completely devoted to them. A gradual decrease from metals to inert substances is observed in the upper rows.

Pictures of periodic table divided vertically. This groups in the periodic table, there are 8 of them. Elements similar in chemical properties. They are divided into main and secondary subgroups. The latter begin only from the 4th period. The main subgroups also include elements of small periods.

The essence of the periodic table

Names of elements in the periodic table is 112 positions. The essence of their arrangement in a single list is the systematization of primary elements. They began to fight over this even in ancient times.

Aristotle was one of the first to understand what all things are made of. He took as a basis the properties of substances - cold and heat. Empidocles singled out 4 fundamental principles according to the elements: water, earth, fire and air.

Metals in the periodic table, like other elements, are the very fundamental principles, but with modern point vision. The Russian chemist managed to discover most of the components of our world and to suggest the existence of still unknown primary elements.

It turns out that pronunciation of the periodic table- voicing a certain model of our reality, decomposing it into components. However, learning them is not easy. Let's try to make the task easier by describing a couple of effective methods.

How to learn the periodic table

Let's start with modern method. Computer scientists have developed a number of flash games that help memorize Mendeleev's list. Project participants are offered to find elements by different options, for example, name, atomic mass, letter designation.

The player has the right to choose the field of activity - only part of the table, or all of it. In our will, also, exclude the names of elements, other parameters. This complicates the search. For the advanced, a timer is also provided, that is, training is carried out at speed.

Game conditions make learning element numbers in the periodic table not boring, but entertaining. Excitement wakes up, and it becomes easier to systematize knowledge in the head. Those who do not accept computer flash projects offer a more traditional way of memorizing a list.

It is divided into 8 groups, or 18 (according to the 1989 edition). For ease of remembering, it is better to create several separate tables, rather than working on a whole version. Visual images matched to each of the elements also help. Rely on your own associations.

So, iron in the brain can be correlated, for example, with a nail, and mercury with a thermometer. The name of the element is unfamiliar? We use the method of suggestive associations. , for example, we will compose from the beginnings of the words "taffy" and "speaker".

Characteristics of the periodic table don't study in one sitting. Lessons are recommended for 10-20 minutes a day. It is recommended to start by remembering only the main characteristics: the name of the element, its designations, atomic mass and serial number.

Schoolchildren prefer to hang the periodic table above the desktop, or on the wall, which is often looked at. The method is good for people with a predominance of visual memory. Data from the list is involuntarily remembered even without cramming.

This is also taken into account by teachers. As a rule, they do not force you to memorize the list, they allow you to look at it even on the control ones. Constantly looking at the table is tantamount to the effect of printing on the wall, or writing cheat sheets before exams.

Starting the study, let us recall that Mendeleev did not immediately remember his list. Once, when the scientist was asked how he opened the table, the answer was: “I’ve been thinking about it for maybe 20 years, but you think: I sat and, suddenly, it’s ready.” The periodic system is painstaking work that cannot be mastered in a short time.

Science does not tolerate haste, because it leads to delusions and annoying mistakes. So, at the same time as Mendeleev, the table was compiled by Lothar Meyer. However, the German did not finish the list a bit and was not convincing in proving his point of view. Therefore, the public recognized the work of the Russian scientist, and not his fellow chemist from Germany.

Chemistry - fascinating but difficult subject. And if the school did not yet have accessories for conducting experiments, then we can say that it completely passed by. But there is something in which every person should be at least minimally oriented. This is the periodic table.

For schoolchildren, learning it is a real torture. If they see her in dreams, then only nightmares. So many elements, each has its own number ... But one mother of many children came up with an entertaining way, how to learn periodic table. It is suitable for both children and adults, and the reaction will gladly tell you about it "So simple!".

Periodic table of chemical elements

As mother-of-four Karin Tripp has shown, with the right approach, it is possible to learn anything. To attach to study of chemistry even small children, she decided to turn the periodic table of the elements into a naval battlefield.

The game contains four pages with the periodic table - two for each player. Each player needs to draw his ships on one table, and on the other - to designate his shots and wrecked enemy ships with dots.

The rules of naval combat are the same as in the classic game. Only in order to shoot down the opponent's boat, you need to name not the letter and number, but the corresponding chemical element.

This technique will allow children not only to learn the names of chemical elements. It promotes the development of memory and logical thinking. After all, children will analyze serial numbers and colors.

In order to make it easier for children at first to find the desired element, rows and columns should be numbered with numbers. But, according to Karin, after a few days of playing the “chemical sea battle”, her children began to perfectly navigate the periodic table. They even knew the atomic masses and serial numbers of the elements.

Over time, the rules of the game can be complicated. For example, place the ship only within one family of chemical elements.

Even the eight-year-old daughter of an inventive mother who has not yet studied chemistry at school plays this game with pleasure. And for adults, this is a great way to have fun.

All pages of the periodic table for playing sea battle can be printed on a regular or color printer and used an unlimited number of times.

The periodic table is one of greatest discoveries humanity, which made it possible to streamline knowledge about the world around us and discover new chemical elements. It is necessary for schoolchildren, as well as for everyone who is interested in chemistry. In addition, this scheme is indispensable in other areas of science.

This diagram contains all known to man elements, and they are grouped according to atomic mass and serial number. These characteristics affect the properties of the elements. In total, there are 8 groups in the short version of the table, the elements included in one group have very similar properties. The first group contains hydrogen, lithium, potassium, copper, the Latin pronunciation in Russian of which is cuprum. And also argentum - silver, cesium, gold - aurum and francium. The second group contains beryllium, magnesium, calcium, zinc, followed by strontium, cadmium, barium, and the group ends with mercury and radium.

The third group includes boron, aluminum, scandium, gallium, then yttrium, indium, lanthanum, and the group ends with thallium and actinium. The fourth group begins with carbon, silicon, titanium, continues with germanium, zirconium, tin, and ends with hafnium, lead, and rutherfordium. In the fifth group there are elements such as nitrogen, phosphorus, vanadium, arsenic, niobium, antimony are located below, then bismuth tantalum comes and completes the dubnium group. The sixth begins with oxygen, followed by sulfur, chromium, selenium, then molybdenum, tellurium, then tungsten, polonium and seaborgium.

In the seventh group, the first element is fluorine, followed by chlorine, manganese, bromine, technetium, followed by iodine, then rhenium, astatine and borium. The last group is the most numerous. It includes gases such as helium, neon, argon, krypton, xenon and radon. This group also includes the metals iron, cobalt, nickel, rhodium, palladium, ruthenium, osmium, iridium, platinum. Next come hannium and meitnerium. Separately located elements that form the actinide series and the lanthanide series. They have similar properties to lanthanum and actinium.


This scheme includes all types of elements, which are divided into 2 large groups - metals and non-metals with different properties. How to determine whether an element belongs to a particular group, a conditional line will help, which must be drawn from boron to astatine. It should be remembered that such a line can only be drawn in full version tables. All elements that are above this line and are located in the main subgroups are considered non-metals. And which are lower, in the main subgroups - metals. Also, metals are substances that are in side subgroups. There are special pictures and photos on which you can get acquainted with the position of these elements in detail. It is worth noting that those elements that are on this line exhibit the same properties of both metals and non-metals.

A separate list is also made up of amphoteric elements, which have dual properties and can form 2 types of compounds as a result of reactions. At the same time, they manifest equally both basic and acid properties. The predominance of certain properties depends on the reaction conditions and the substances with which the amphoteric element reacts.


It should be noted that this scheme in the traditional execution of good quality is color. Wherein different colors for ease of orientation are marked main and secondary subgroups. And also elements are grouped depending on the similarity of their properties.
However, at present, along with the color scheme, the black-and-white periodic table of Mendeleev is very common. This form is used for black and white printing. Despite the apparent complexity, working with it is just as convenient, given some of the nuances. Yes, distinguish main subgroup from the side in this case, it is possible by differences in shades that are clearly visible. In addition, in the color version, elements with the presence of electrons on different layers are indicated different colors.
It is worth noting that in a single-color design it is not very difficult to navigate the scheme. For this, the information indicated in each individual cell of the element will be enough.


The exam today is the main type of test at the end of school, which means that preparation for it must be given Special attention. Therefore, when choosing final exam in chemistry, you need to pay attention to the materials that can help in its delivery. As a rule, schoolchildren are allowed to use some tables during the exam, in particular, the periodic table in good quality. Therefore, in order for it to bring only benefit in tests, attention should be paid in advance to its structure and the study of the properties of the elements, as well as their sequence. You also need to learn use the black and white version of the table so that you don't face any difficulties in the exam.


In addition to the main table characterizing the properties of elements and their dependence on atomic mass, there are other schemes that can help in the study of chemistry. For example, there are tables of solubility and electronegativity of substances. The first one can determine how soluble a particular compound is in water at ordinary temperature. In this case, anions are located horizontally - negatively charged ions, and cations, that is, positively charged ions, are located vertically. To find out degree of solubility of one or another compound, it is necessary to find its components in the table. And at the place of their intersection there will be the necessary designation.

If it is the letter "p", then the substance is completely soluble in water in normal conditions. In the presence of the letter "m" - the substance is slightly soluble, and in the presence of the letter "n" - it almost does not dissolve. If there is a “+” sign, the compound does not form a precipitate and reacts with the solvent without residue. If a "-" sign is present, it means that such a substance does not exist. Sometimes you can also see the “?” sign in the table, then this means that the degree of solubility of this compound is not known for certain. Electronegativity of the elements can vary from 1 to 8, there is also a special table to determine this parameter.

Another useful table is the metal activity series. All metals are located in it by increasing the degree of electrochemical potential. A series of stress metals begins with lithium, ends with gold. It is believed that the further to the left a metal occupies in this row, the more active it is in chemical reactions. Thus, the most active metal Lithium is considered to be an alkaline metal. Hydrogen is also present at the end of the list of elements. It is believed that the metals that are located after it are practically inactive. Among them are elements such as copper, mercury, silver, platinum and gold.

Periodic table pictures in good quality

This scheme is one of the greatest achievements in the field of chemistry. Wherein There are many types of this table.- a short version, a long one, as well as an extra long one. The most common is the short table, and the long version of the schema is also common. It is worth noting that the short version of the scheme is not currently recommended by IUPAC for use.
Total was more than a hundred types of tables have been developed, which differ in presentation, shape, and graphical representation. They are used in various fields of science, or not used at all. Currently, new circuit configurations continue to be developed by researchers. As the main option, either a short or a long circuit in excellent quality is used.