Биологические мембраны. Плотности градиент, формирование Отрывок, характеризующий Градиент концентрации

Разного диаметра (см. текст)

    Растворы для формирования ступенчатого градиента плотности сахарозы (состав растворов см. 3.1). 

Вещества, используемые для формирования градиента плотности. Для формирования градиента плотности необходимо иметь инертные, нетоксичные и быстрорастворимые в воде и солевых растворах вещества. Эти вещества должны обладать большим молекулярным весом и высокой плотностью при низкой вязкости . Высокая плотность градиентного раствора необходима для того, чтобы можно было формировать крутой градиент, а низкая вязкость градиента способствует более быстрой седиментации частиц , быстрому установлению равновесия и упрощает процедуру фракционирования содержимого градиентной пробирки. При анализе фракций эти вещества не должны мешать определению содержания белка и измерению поглощения в ультрафиолетовой области . И главное требование эти вещества должны быть индифферентны к вирусным частицам. 


    Наиболее часто для формирования градиентов плотности используется сахароза, по своим свойствам соответствующая указанным выще требованиям. Кроме того, она дешева и ее раствор обладает определенной вязкостью , способствующей стабилизации зон в то же время эта вязкость не настолько высока, чтобы препятствовать движению заряженных молекул и частиц. Для этой же цели можно применять и другие вещества , например глицерин, этиленгликоль, тяжелую воду и в ограниченном диапазоне концентраций этанол. 

Если диаметр резервуара меньше диаметра смеситель (рис. 52, 2), то начальные изменения плотности относительно невелики и градиент начинается более полого, чем линейный. Это будет компенсировано резким изменением плотности в конце формирования градиента . Теперь ситуация становится обратной. Вогнутый градиент с резким нарастанием плотности в области высоких ее значений образуется в том случае, если в резервуаре находится более плотный раствор сахарозы (в). Вносить его в пробирку можно только на дно, через иглу шприца. 

Растворы для формирования градиента плотности сахарозы а) 0,8 М сахарозы, 50 мМ хлорида натрия , 50 мМ трис-НС1 буфера при рН=7,8, 2 мМ хлорида магния б) 1,0 М сахарозы, 50 мМ хлорида натрия , 50 мМ трис-НС1 буфера при pH=7,8, 2 мМ хлорида магния в) 1,5 М сахарозы, 50 мМ хлорида натрия , 50 мМ трис-НС1 буфера при pH=7,8, 2 мМ хлорида магния. 

Андерсон описал устройство применяемое для формирования градиента (рис, 19). Прибор СОСТОИТ из двух шприцев, содержащих два раствора различной плотности . Шприцы присоединены общим выводным капилляром, где происходит смешивание растворов . Капиллярную трубку опускают в центрифужную про-бирку. При постоянной скорости поршней в шприцах концентрация сахарозы в растворе, оттекающем из устройства изменяется линейно со временем. При этом в центрифужной пробирке создается линейный градиент сахарозы. Такой сформированный градиент стабилен в течение нескольких часов. Кроме линейного градиента , такое устройство может формировать градиенты других форм при помощи кулачков различной формы которые изменяют скорость движения поршней по любой заданной программе . Эти различные формы градиента можно использовать ддя разделения смесей , содержащих компоненты с различной скоростью седиментации или плотностью. Например, если смесь содержит три компонента плотностью 1,12, 1,14, 1,25 г/мл, идеальный градиент в этом случае должен иметь 8-форму. Он должен быть пологим в зоне плотности от 1,10 до 1,16 г/мл, чтобы первые два компонента, близкие по плотности, достаточно хорошо отделились за определенное время . Затем градиент должен быть крутым в зоне плотности от 1,16 до 1,30 г/мл, чтобы третий компонент расположился на некотором расстоянии от дна пробирки. 

    Время сохранения преформированного градиента в таких неравновесных условиях должно зависеть от длины пробирки, подобно тому как от нее зависит время формирования градиента . Действительно, можно показать, что в центральной трети пробирки преформированный градиент любого профиля сохранится неизменным в течение времени /о=0,15 - (в часах). Для нормального случая истинно равновесного центрифугирования, независимо от использования преформирования, скорость вращения выбранного ротора однозначно определяется заданным интервалом плотностей градиента Др. Приведенную выше формулу для Др в практических целях можно переписать, выразив угловую скорость вращения ротора

Стремление выращивать монокристаллы с малой плотностью дислокаций, или вообще бездислокацион -ные, способствовало к появлению большого числа приемов, направленных на достижение этих целей. Идея этих приемов главным образом сводится к снижению тепловых потоков с поверхности кристалла , уменьшению радиальных градиентов температуры , т. е. формированию плоского фронта кристаллизации . Такое направлепие не случайно. Большинство работ, посвященных вопросу выращивания монокристаллов с малой плотностью дислокаций , указывают именно на необходимость создания условий, обеспечивающих плоский фронт кристаллизации. 

Рис. 9. Прибор для электрофореза в градиенте) плотности в начале электрофоретического разделения . А, Л-образная трубка . Б. Составные части поршня. 1 - аппарат для создания градиента плотности 2 - двухходовой кран 5 -трехходовой кран - пластмассовый шприц для вне сения пробы 5 - пропускание воздуха для перемешивания раствора при формировании градиента 6 - ось редуктора, понижающего число оборотов мотора 7-нитка 8 - анодная платиновая спираль Р -градиент -поршень /7 -проба в выбранном положении /2 - насыщенный раствор сахарозы 75 -пробка из полиакриламидного геля 74 - насыщенный раствор хлористого натрия /5 - катод 75 -водяная рубашка для термостатировання 77-пластмассовая трубка 75 -зубчатая насечка 7Р -пробка из полиакриламида или агарозы 20 - уплотнительное кольцо 21 - наконечник для присоединения пластмассовой трубки.
    Одна из особенностей высокотемпературной кристаллизации состоет в том, что окончательное формирование реальной структуры монокристаллов не завершается актом фазового перехода . В условиях высоких температур и критических по величине температурных градиентов интенсивно протекают всевозможные процессы. Среди них важное место занимают процессы, связанные с остаточными термоупругими напряжениями и их релаксацией (в результате пластической деформации монокристаллов). Кроме того, в высокоградиентном температурном поле возможны и процессы переноса вещества , а , связанные с кристаллизацией вещества во включениях, содержащих расплав нестехиометрического состава. Не исключены и твердофазные химические реакции , влияющие на плотность точечных дефектов , а также на валентное состояние отдельных компонентов вещества и примесей. 

В 1961 г. в журнале Nature были опубликованы работы двух групп авторов, сыгравшие исключительную роль в формировании современных представлений о процессах биосинтеза белка. В обоих случаях было использовано препаративное ультрацентрифугирование в одном из них компоненты бесклеточнои системы разделяли в градиенте плотности хлористого цезия , в другом использовали градиенты концентрации сахарозы. 

Сила / положительна, если х отрицательно, и наоборот, на основании чего можно сделать вывод, что полимерные молекулы стремятся собраться при г = Го х = 0). В большинстве опытов исходное распределение растворителей и полимера однородное и формирование градиента плотности происходит одновременно с образованием полосы полимера. Это сложный процесс , характер которого зависит от скоростей различных седиментационных процессов. Представляет интерес рассмотре ть гипотетический случай , когда градиент плотности был установлен до того, как началась седиментация полимера . Практически примерно так обстоит дело в тех системах, в которых скорость образования градиента плотности высока по сравнению со скоростью образования полосы полимера . Теперь рассмотрим, что будет происходить с полимером под действием силы /, выражаемой уравнением (X111-3), если исходное распределение полимера было однородным в широком интервале значений (рис. 290). В предположении, что уравнение (XII1-3) применимо во всем интересующем нас интервале, можно считать , что каждая полимерная молекула подвергается действию силы , пропорциональной расстоянию от центра л = 0. На ранних стадиях процесса влияние диффузии будет незначительно, за исключением краев Р и Q, так как только в этих точках имеется градиент концентра- 

Рис. 1.9. Формирование зон плазмидной и хромосомной ДНК в градиенте плотности s l. В УФ свете сфотографирована центрифужная пробирка , в которой произошло разделение плазмидной и хромосомной ДНК
Оглавление темы "Передача информации посредством электрического возбуждения.":
1. Передача информации посредством электрического возбуждения. Потенциал покоя.

3. Изменения внеклеточной концентрации калия (К).
4. Влияние глии на состав межклеточной среды. Гематоэнцефалический барьер.
5. Потенциал действия. Временной ход потенциала действия. Реполяризация.
6. Следовые потенциалы. Природа потенциала действия. Порог и возбудимость.
7. Проводимость мембраны. Ионные токи во время потенциала действия.
8. Кинетика ионных токов во время возбуждения. Регистрация мембранных токов.
9. Натрий (Na) и калиевая (K) проводимость во время потенциала действия.
10. Инактивация натриевого (Nа) - тока.

Диффузионный потенциал. Ранее было отмечено, что потенциал покоя представляет собой диффузионный потенциал ионов , которые пассивно перемещаются через каналы в мембране. В состоянии покоя большинство открытых каналов мембраны являются калиевыми (K)-каналами; следовательно, потенциал покоя в первом приближении определяется трансмембранным градиентом концентрации калия (K) . На рис. 2.2 показана зависимость измеренного потенциала от внеклеточной концентрации калия (K).

Рис. 2.2. Зависимость потенциала покоя в мышечном волокне лягушки (ордината) от внеклеточной концентрации калия (K) (абсцисса, логарифмическая шкала). Кружками отмечены значения мембранного потенциала, измеренного при различных концентрациях ионов калия [К+]0. Прямая линия отражает соотношение между калиевым равновесным потенциалом и [К+]0, рассчитанное по уравнению Нернста. Коэффициент 58 учитывает пониженную температуру тела лягушки.

После сдвига внеклеточной концентрации К+ внутриклеточная концентрация сначала сохраняется на прежнем уровне, и в течение этого короткого промежутка времени измеряемый калиевый (K) -потенциал должен в соответствии с уравнением Нернста изменяться пропорционально логарифму [К+]0. Этот калиевый (K)-потенциал. Е(k), обозначен красной линией на рис. 2.2. Регистрируемые значения потенциала покоя в верхнем диапазоне очень близки к Е(k), однако по мере снижения [К+]0 они становятся все менее отрицательными по сравнению с Е(k). Это расхождение следует отнести за счет относительно большего вклада натриевой проницаемости PNa при низком значении [К+]0. Отклонение регистрируемых значений потенциала покоя от Е(k) исчезает, если прекратить поступление натрия (Na) , например, путем замещения внеклеточного натрия (Na) таким неспособным к диффузии катионом, как холин. Отсюда следует, что нормальный потенциал покоя примерно на 10 мВ более положителен, чем Е(k).

Характеризующая величину и направление наибольшего изменения концентрации какого-либо вещества в среде. Например, если рассмотреть две области с различной концентрацией какого-либо вещества, разделённые полупроницаемой мембраной, то градиент концентрации будет направлен из области меньшей концентрации вещества в область с большей его концентрацией Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] .

Определение

Градиент концентрации направлен по пути l , соответствующему нормали к изоконцентрационной поверхности (полупроницаемой мембране). Значение концентрационного градиента texvc не найден; См. math/README - справку по настройке.): \nabla C равно отношению элементарного изменения концентрации dC к элементарной длине пути dl :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \nabla C = \frac{dC}{dl}

При постоянном значении градиента концентрации C на длине пути l :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \nabla C = \frac{C_1 - C_2}{l}

Здесь C 1 и C 2 - начальное и конечное значение концентрации на длине пути l (нормали к изоконцентрационной поверхности).

Градиент концентрации может быть причиной переноса веществ, например диффузии . Диффузия осуществляется против вектора градиента концентрации[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]] .

Единицей измерения градиента концентрации в Международной системе единиц (СИ) является величина −4 (моль/м 4 или кг/м 4), а также её дольные или кратные производные.

См. также

Напишите отзыв о статье "Градиент концентрации"

Литература

  • Антонов В. Ф., Черныш А. М., Пасечник В. И. Биофизика - М .: ВЛАДОС, 2000, С. 35. ISBN 5-691-00338-0
  • Трифонов Е. В. - СПб.: 2011.

Отрывок, характеризующий Градиент концентрации

– Это Ведьмы и Ведуны, Изидора. Когда-то одним из них был твой отец... Мы обучаем их.
Сердце болело... Мне хотелось завыть волчьим голосом, жалея себя и свою короткую потерянную жизнь!.. Бросив всё, сесть вместе с ними, с этими счастливыми Ведунами и Ведьмами, чтобы познать умом и сердцем всю глубину чудесного, так щедро открытого им великого ЗНАНИЯ! Жгучие слёзы готовы были хлынуть рекой, но я из последних сил пыталась их как-то удерживать. Делать это было никак нельзя, так как слёзы были очередной «запрещённой роскошью», на которую у меня не было никакого права, если я мнила себя настоящим Воином. Воины не рыдали. Они боролись и побеждали, а если гибли – то уж точно не со слезами на глазах... Видимо, я просто очень устала. От одиночества и боли... От постоянного страха за родных... От бесконечной борьбы, в которой не имела ни малейшей надежды выйти победительницей. Мне был очень нужен глоток свежего воздуха, и этим воздухом для меня была моя дочь, Анна. Но почему-то, её нигде не было видно, хотя я знала, что Анна находится здесь, вместе с ними, на этой чудесной и странной, «закрытой» земле.
Север стоял рядом со мной на краю ущелья, и в его серых глазах таилась глубокая печаль. Мне захотелось спросить у него – увижу ли я его когда-либо? Но не хватало сил. Я не хотела прощаться. Не хотела уходить. Жизнь здесь была такой мудрой и спокойной, и всё казалось так просто и хорошо!.. Но там, в моём жестоком и несовершенном мире умирали хорошие люди, и пора было возвращаться, чтобы попытаться хоть кого-то спасти... Это по-настоящему был мой мир, каким бы страшным он не являлся. И мой оставшийся там отец возможно жестоко страдал, не в силах вырваться из лап Караффы, которого я железно решила, чего бы мне это не стоило, уничтожить, даже если за это придётся отдать свою короткую и такую дорогую для меня, жизнь...
– Могу ли я увидеть Анну? – с надеждой в душе, спросила я Севера.
– Прости меня, Изидора, Анна проходит «очищение» от мирской суеты... Перед тем, как она войдёт в тот же зал, где только что находилась ты. Она не сможет к тебе сейчас придти...
– Но почему же мне не понадобилось ничего «очищать»? – удивилась я. – Анна ведь ещё ребёнок, у неё нет слишком много мирской «грязи», не так ли?

Когда градиент концентрации равен нулю, процесс диффузии итти не может. Непременным условием диффузии является также проницаемость поверхности, через которую должен итти процесс диффузии. Когда поверхность непроницаема для частиц вещества, диффузия этого вещества итти также не может.[ ...]

При высоких градиентах концентраций химических веществ в воде происходит нарушение осморегуляторной функции жабр, что имеет важное значение для объяснения механизма действия многих токсикантов и используется в борьбе с болезнями рыб. Например, на этом основан гиперосмотический способ введения вакцин и лечебных препаратов.[ ...]

Суточный ход концентрации 03 у земной поверхности существенно отличается от равнинного. В течение года она снижается к середине дня. Глубина полуденного минимума достигает минимального значения 4-5 ppb в летние месяцы, зимой он слабо выражен. На рис. 4.10 представлены вариации изменений содержания 03 в течение суток для различных месяцев (с апреля по декабрь 1989 г. и с января по март 1990 г.). Специфические особенности такого изменения концентрации приземного озона связаны с горнодолшшой циркуляцией, активно действующей в теплое время года, положительным градиентом концентрации озона в нижней тропосфере, фотохимическими процессами, приводящими в условиях высокой солнечной освещенности при малом содержании NOx к разрушению молекул озона в дневное время. В ночное время падающий стоковый поток приносит богатый озоном чистый воздух из вышележащих слоев в тропосфере.[ ...]

Как известно, градиенты концентраций возникают не только в среде мембраны, но и в растворе. Обычно их пытаются устранить, применяя интенсивное перемешивание. Однако последнее не захватывает нернстовский диффузионный слой и концентрационный градиент в нем не удается устранить. Естественно, что в таких случаях теория должна учитывать влияние примембранной пленки раствора. Для количественного рассмотрения явления необходимо знать толщину этой пленки, которую оценивают методами гидродинамики, измерением диффузии и потенциалов или непосредственно, определяя критическую плотность тока в поле высокой напряженности, т. е. работая в условиях, близких к поляризации. Но если для оценки толщины примембранной пленки раствора используется явление поляризации, то это крайне вредит всему процессу электродиализа.[ ...]

К концу процесса, когда градиент концентрации приближается к нулю, т. е. когда концентрации выравниваются, в единицу времени в раствор переходит все меньше и меньше смолистых.[ ...]

Диффузиофорез - движение частиц, вызываемое градиентом концентрации компонентов газовой смеси. Это явление отчетливо проявляется в процессах испарения и конденсации.[ ...]

Диффузиофорез - движение частиц под влиянием градиента концентрации при отсутствии внешнего электрического поля. Он является аналогом электрофореза, но в отличие от него движущей силой перемещающихся частиц в жидкой фазе является не градиент электрического потенциала, а градиент концентрации растворенных веществ вдоль потока. Это явление было открыто и описано Б.В. Дерягиным и С.С. Духиным в 1964 г.[ ...]

Движущей силой процесса экстракции является градиент концентрации - векторная величина, определяющая направление диффузии. Диффузия включает молекулярную и конвективную составляющие.[ ...]

Для понимания механизмов угнетающего действия высоких концентраций Н+ на активный транспорт №+ определенный интерес, на наш взгляд, представляют соображения Г. Ульча . Он считает, что механизм транспорта ионов при pH воды 4,0 должен преодолеть резко возросший (в 25 тыс. раз) градиент ионов Н+ в сравнении с тем, что имеет место при pH воды 7,4. Такое чрезвычайно высокое увеличение градиента концентраций Н+ неизбежно должно затормозить активный транспорт ионов №+ из воды в кровь, поскольку нормальная работа ионных насосов происходит только при сопряженном выходе из организма во внешнюю среду определенных противоионов: для №+ - это Н+ и ЫН5, а для СГ - это НСОз. Правда, рыбы располагают еще одним, так сказать, резервным механизмом поглощения натрия с использованием в качестве противоиона 1МН4 (№+ = 1МН), тем более, что при закислении воды усиливается образование аммония и его выход из организма должен значительно возрасти. Однако при низком pH воды, т. е. при увеличении концентрации ионов во внешней среде, возрастает сопротивление транспорту аммония и он выделяется, вероятно, не в ионной форме, а в форме аммиака, который обладает более высокой диффузионной способностью . Таким образом, и дополнительный механизм поглощения №+ в обмен на [МН4 может быть заблокированным при высоких концентрациях ионов водорода в окружающей среде.[ ...]

Перемещение на большие расстояния, вероятно, не зависит от градиента концентрации вируса на пути перемещения. Скорее это быстрый случайный перенос инфекционного материала. На ранних стадиях системного заражения вирус, очевидно, может проникать через восприимчивые к инфекции ткани, не вызывая в них инфекции (см., например, ).[ ...]

При испарении с поверхности капли (или пленки жидкости) возникает градиент концентрации пара, но так как общее давление пара должно оставаться постоянным, происходит гидродинамическое течение парогазовой смеси (ПГС), направленное перпендикулярно к поверхности испаряющейся капли и компенсирующее диффузию газов к этой поверхности.[ ...]

Таким образом, перепое волов через мембрану может осуществляться против градиента концентрации с затратой энергии, т. е. путем активпого переноса.[ ...]

Диффузионный перенос в проточном реакторе почти всегда имеет место вследствие возникновения градиента концентраций по длине (см. рис. 2.41). Необходимо отметить, что механизм такого переноса не только молекулярный - поток вещества 03с1С/(]1 определяется через некий эффективный коэффициент диффузии Оэ (например, турбулентная диффузия). И если этот поток сопоставим с конвективным - Си (перенос вещества с потоком, движущимся со скоростью и), то становится очевидным, что его надо учитывать при построении модели.[ ...]

Движущей силой разделения смесей в основном является избыточное давление со стороны исходного потока или градиент концентрации разделяемых веществ.[ ...]

Эффективность процесса экстракции зависит от следующих факторов: величины поверхности взаимодействия между фазами, градиента концентрации извлекаемого вещества, скорости взаимного перемещения фаз, продолжительности контакта. Чем выше эти показатели, тем больше возрастают скорость процесса и полнота очистки.[ ...]

Поскольку магма представляет собой многокомпонентную систему, применение к ней модели чисто термической конвекции, либо конвекции, обусловленной градиентами концентрации вещества, далеко не всегда оправдано. Физически более вероятной в этих случаях является модель двухдиффузной конвекции . В этом виде конвекции “действуют” два потока: первый обусловлен градиентом температуры (диффузионный поток энергии), второй - градиентом концентрации вещества (или нескольких веществ, как, например, в магме). Оба потока взаимодействуют друг с другом. Простейший пример - нагревание снизу раствора солей с некоторым градиентом концентрации. В этой ситуации раствор “разбивается” на ряд горизонтальных конвектирующих слоев, в каждом из которых температура и содержание солей перемешаны. Слои разделены поверхностями, через которые тепло и соль переносятся за счет молекулярной диффузии.[ ...]

Установлено, что биохимическая среда сосняков и ельников пространственно неоднородна как в вертикальном, так и в горизонтальном направлении. Величина градиента концентраций терпеновых углеводородов в горизонтальной плоскости в среднем составила 0,3 мг/м3 (максимальная - 0,6-1,0 мг/м3), в вертикальной плоскости - 0,3-0,5 мг/м3. Неоднородность биохимического режима обусловлена, по-видимому, неодинаковым количеством зеленой биомассы, состоянием биогрупп подроста и дифференцировкой кроны на разнокачественные слои с преобладанием двухлетней хвои в средней части кроны, которая физиологически наиболее активна.[ ...]

При неподвижном хранении перенос паров с поверхности продукта в ГП происходит вследствие молекулярной квази-изотерми-ческой и изобарической диффузии за счет градиента концентраций паров продукта. При этом принимается, что в ГП на поверхности продукта располагается насыщенный парами слой паровоздушной смеси.[ ...]

Систематическое дистанционное зондирование фитопланктона на ходу судна впервые было проведено в 1980 г. , что позволило получить кривые пространственного распределения концентрации фитопланктона в поверхностном слое воды. Анализ этих кривых показал, что возможны резкие градиенты концентрации фитопланктона на расстояниях порядка нескольких километров (рис. 5, кривая I). Отметим, что такого рода резкие градиенты обычно остаются незамеченными, если измерения проводят по стандартной методике лишь на станциях. Для сравнения на рис. 5 приведена кривая 2, построенная по измерениям на станциях.[ ...]

Рассмотрим неподвижный слой жидкости толщиной к, контактирующий со слоем парогазовой смеси толщиной к и (ё - к) (рис. 1.8). При испарении в жидкости и парогазовой смеси возникают градиенты температур (области I и II), а в смеси -градиент концентрации пара испаряющейся жидкости (область II).[ ...]

В дозиметрах пассивного типа диффузия химических веществ осуществляется через стабильный слой воздуха (диффузионные дозиметры) или путем проникания вещества через мембрану согласно градиенту концентраций (проницаемые дозиметры). Дозиметры этих двух типов изображены на рис. 1.49.[ ...]

Поглощение питательных веществ клеткой может быть пассивным и активным. Опо связано с процессом диффузии и идет по градиенту концентрации данного вещества. Как уже рассматривалось выше(см. с. 46), с термодинамической точки зрения направление диффузии определяется химическим потенциалом вещества. Чем выше концентрация вещества, тем выше его химический потенциал. Передвижение идет в сторону меньшего химического потенциала. Необходимо отметить, что направление движения иопов определяется не только химическим, но также электрическим потенциалом. Ионы, обладающие разпоимепиым зарядом, могут диффундировать через мембрану с раяпой скоростью. Благодаря этому создается разность потенциалов, которая, в слою очередь, может служить движущей силой поступления противоположно заряженною иона. Электрический потенциал может также возникать в результате неравномерного распределения зарядов в самой мембране. Таким образом, пассивное передвижение иопов может идти по градиенту химического и электрического потенциала.[ ...]

Поскольку растворение газа является диффузионным процессом, то скорость его пропорциональна поверхности соприкосновения газа с жидкостью, интенсивности их перемешивания, коэффициенту диффузии и градиенту концентрации диффундирующего компонента в газовой и жидкой средах. Поэтому при проектировании абсорберюв особое внимание уделяют организации контакта газового потока с жидким растворителем и выбору поглощающей жидкости (абсорбента).[ ...]

Расчет коэффициента диффузии. Беспорядочное тепловое движение молекул газа является основной причиной его диффузии в жидкость. По сложившейся традиции "движущую силу" процесса определяют как разность концентраций газа насыщенной и ненасыщенной фаз, хотя в действительности совершающее броуновское движение молекулы не подвергаются действию дополнительной "силы" в направлении градиента концентрации. Однако статистическое перераспределение молекул газа неизбежно приводит к сокращению разности концентраций, что обусловливает постепенный перенос массы в направлении понижения концентрации.[ ...]

Факторами, которые влияют на флокуляцию практически одинаково в лабораторных и производственных условиях, являются время реакции (время пребывания), распределение энергии перемешивания, свойства раствора и концентрация реагентов. При этом, поскольку сопоставляются непроточная и проточная системы, сравнение времени пребывания оказывается затруднительным. Сложно определить и средний расход энергии на перемешивание на единицу объема реактора в процессах, зависящих от потока. Трудно также количественно отразить пристеночные эффекты, концентрационные флуктуации и градиенты концентрации. Можно ли пренебречь этими эффектами во все моменты времени, будет выяснено лишь после тщательной оценки конкретной ситуации.[ ...]

Мвх и (?„х - материальные и тепловые потоки, входящие в выделенный объем (покидающие объем потоки имеют отрицательное значение); входящие потоки могут быть как конвективными (течение реагентов), так и диффузионного характера (вследствие возникновения градиентов концентраций и температуры).[ ...]

Присутствие ММФ в препаратах НАД-киназы из скелетных мышц кролика было продемонстрировано также при фракционировании на колонке с сефадексом G-200 (3), а значения молекулярных весов олигомеров фермента были уточнены с помощью метода электрофореза в линейном градиенте концентрации полиакриламидного геля (ПААГ) . Результаты, полученные при исследовании фермента двумя указанными методами, показали, что в частично очищенных препаратах НАД-киназы присутствуют олигомеры фермента с молекулярными весами 31000, 65000, 94 000, 160 000, 220 000, 350 000. Наименее ассоциированной формой НАД-киназы является белок с молекулярным весом 31 000, который, по-видимому, можно считать субъединицей фермента на том основании, что после обработки додецилсульфатом натрия двух низкомолекулярных фракций, снятых с колонки (31 000, €5 000), и последующего электрофореза на электрофореграммах не был обнаружен белок с молекулярным весом, меньшим 30 000.[ ...]

Удачно дополняет метод биотестирования на дафниях биоте-стовый анализ с помощью простейших микроорганизмов - инфузорий-туфелек (Paramecium caudatum). Метод биотестового анализа водных проб основан на способности инфузорий избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в благоприятные зоны. Метод позволяет оперативно определять острую токсичность водных проб и предназначен для контроля токсичности природных, сточных, питьевых вод, водных вытяжек из различных материалов и пищевых продуктов.[ ...]

Благодаря содержанию растворов солей, сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления. Например, давление в клетках животных (морских и океанических форм) достигает 30 атм и более. В клетках растений осмотическое давление является еще большим. Разность концентрации веществ внутри и снаружи клетки называют градиентом концентрации.[ ...]

Приведем существующую классификацию полупроницаемых мембран, применяемых при осуществлении процессов обратного осмоса и ультрафильтрации (рис. 6.36). Указанные мембраны могут быть; пористыми и непористыми, причем последние являются квази-гомогенными гелями, через которые растворитель и растворенные вещества проникают под действием градиента концентраций (молекулярная диффузия), поэтому такие мембраны получили название диффузионных.[ ...]

Хотя суша занимает только 30% поверхности земного шара, большую ее площадь занимает растительный мир, активно поглощающий газы из атмосферы. Растения могут поглощать атмосферные газы подобно неорганическим веществам без переработки или, что гораздо важнее, активно включать их в процессы метаболизма, создавая таким образом благоприятный градиент концентрации для дальнейшего поглощения. Хорошим примером является диоксид углерода, который загрязняет атмосферу, являясь основным продуктом сгорания углерода.[ ...]

Для ликвидации отходов широко используется почва, поэтому очень важен выбор типа почвы: с подходящей проницаемостью, размерами частиц и стабильностью; необходимо также поддерживать фильтрующие характеристики почвы с помощью соответствующего режима подачи отходов, так как любые антиокислительные условия в почве будут снижать скорость биодеградации. Первоначальные градиенты концентраций доноров и акцепторов электронов, кислорода и температуры приводят к расслоению микробной популяции, прежде всего к сорбции микроорганизмов, потребляющих органический углерод. После того как произошла сорбция, начинается процесс микробного катаболизма. Процесс захоронения отходов в почве дешев , но может возникнуть целый ряд сложностей, особенно зимой, из-за больших объемов фильтрующихся в почву вод, малого испарения и низкой микробной активности. Даже в наиболее благоприятных условиях может происходить накопление тяжелых металлов и образование относительно непроницаемого слоя уплотненной почвы из-за осаждения нерастворимых солей железа, марганца и кальция . Кроме того, высокие концентрации органических соединений и тяжелых металлов могут приводить к гибели растительного покрова , избежать которой позволяет только предобработка . Так, хотя распыление образующихся на свалке вод, на песчаных почвах, служащих источником кормовых трав, не оказывало на эти травы никакого вредного влияния, но в них накапливались оксиды кальция, магния и фосфора (V). Фильтрующиеся в почву воды свалок, обладая фитотоксичным действием, в то же время содержат необходимые для растений питательные вещества. Исследования Мензера показали, что при выращивании сои на песке с орошением такими водами наблюдается несбалансированность по питательным веществам и процесс нуждается в тщательной регуляции .[ ...]

Широтное распределение эмиссии (на рис. 3.6) указывает на промышленно развитые страны Северного полушария как на основные "поставщики" техногенного С02. Неравномерность распределения источников, а также особенности общей циркуляции атмосферы (существование замкнутых пассатных ячеек и внутри-тропической зоны конвергенции, см. рис. 1.5) служат причиной возникновения широтного градиента концентраций С02.[ ...]

В то время как некоторые участки темно-зеленого типа исчезают и в них репродуцируется ВТМ, другие участки инфицированного листа остаются почти полностью свободными от вируса в течение всей жизни листа. Темно-зеленые участки такого типа, по-видимому, не поддерживают репродукции ВТМ. Этот вывод можпо сделать на том основании, что, во-первых, при суперипфицировании этих участков ВТМ концентрация инфекционного вируса в них по увеличивается и, во-вторых, граница между желто-зелеными тканями с высокой концентрацией инспекционного ВТМ и темно-зеленым участком остается четкой в течение многих недель, несмотря на то что клетки обоих участков соединены плазмодесмами. В темно-зеленых участках вблизи границ с желто-зелеными тканями обнаружен градиент концентрации свободных частиц ВТМ, которые, как мы полагаем, диффундируют из соседних желто-зеленых тканей (фиг. 35).[ ...]

Однако практика показывает, что эти гербициды проникают в корни в сравнительно небольших количествах и поэтому вызывают только частичную гибель корневой системы; часть корней остается живой и способна давать новые побеги. Причиной этого является постепенная адсорбция и распад действующего вещества гербицида при его передвижении по проводящим тканям стебля . Чем дальше от места нанесения, тем ниже концентрация гербицида. В растении создается как бы градиент концентрации гербицида . В результате можно наблюдать, что у растений корнеотпрысковых сорняков, обработанных гербицидами, отмирают только надземная часть, корневище и некоторая часть прилегающих к корневищу корней, а дальше концентрация гербицида в тканях падает настолько, что он только частично повреждает, но не убивает корень . В наиболее отдаленные от корневища участки корня гербицид может не проникнуть совсем.[ ...]

Таким образом, реку можно сравнить с системой, находящейся в состоянии постоянного брожения и обладающей способностью к самоочищению, т.е. к удалению растворенного и взвешенного органического вещества со свойством поллютанта. Химические соединения, которые находятся Н воде или присутствуют в данных отложениях, влияют на водные биоценозы. В результате самоочищения возникает вторичный эффект - появление градиентов концентраций кислорода, питательных элементов и биологических субстанций.[ ...]

Очистка газовых выбросов с помощью жидких поглотителей состоит в контактировании потока загрязненного газа с поглотителем при последующем отделении очищенного газа от отработанного поглотителя. В ходе процесса загрязняющая примесь поглощается жидкостью. Абсорбция - типовой процесс химической технологии, который в технике очистки газовых выбросов часто называется скрубберным процессом. Движущей силой его является градиент концентраций на границе раздела фаз газ - жидкость. Процесс протекает тем быстрее, чем больше поверхность раздела фаз, турбулентность потоков и коэффициенты диффузии. Абсорбции посвящено много публикаций в литературе химико-техноло-гического профиля, и к ним следует обращаться за дополнительной информацией. Здесь же будут рассмотрены самые общие характеристики абсорберов, которые широко используются для удаления таких загрязняющих веществ, как сернистый ангидрид, сероводород, легкие углеводороды.[ ...]

Пользуясь выражением (8.1.36), легко оценить вклад каждой стадии в процесс диффузионного извлечения загрязнителя из грунта. Первый член в квадратных скобках определяет продолжительность диффузионной стадии пропитки (напомним, что если капилляры пропитываются в течение первой стадии, определяемой вязким сопротивлением, то в силу ее кратковременности продолжительность этой стадии можно не учитывать); второй член характеризует продолжительность стадии формирования градиента концентрации; третий - продолжительность собственно диффузионного процесса после завершения стадий пропитки и формирования градиента концентрации. Оценим теперь соотношение продолжительности стадий процесса в зависимости от условий проведения процесса выщелачивания загрязнителя.[ ...]

На рис. 2.3, а представлен неподвижный слой катализатора и вьиелены протекающие в нем процессы - составляющие общего процесса. Общий (конвективный) поток реагентов 7 проходит между зернами катализатора. Из потока реагенты диффундируют к поверхности зерен (2) и в поры катализатора (3), на внутренней поверхности которых протекает реакция (4). Продукты обратным путем отводятся в поток. Выделяющееся тепло переносится по слою (5) и затем от слоя через стенку - к хладагенту (б). Возникающие вследствие протекания реакции градиенты концентрации и температуры вызывают потоки вещества и тепла (7), дополнительные к основному конвективному движению реагентов.[ ...]

Изучение распределения и перемещений гидробионтов проводилось на водоемах и их участках, в разной степени подвергнутых антропогенному воздействию. В результате удалось документировать ряд новых поведенческих реакций рыб и беспозвоночных на распространение загрязняющих веществ. Даже в центрах залповых сбросов неочищенных токсичных вод часть особей местных популяций оказывается способной распознать опасность и попытаться уйти из зоны в более чистую литораль и притоки или сменить слой обитания, оторвавшись ото дна, где, как правило, отмечаются наибольшие концентрации вредных веществ. Наиболее быстро уходом в сторону убывания градиента концентрации загрязнителя реагируют мигрирующие (номадные) особи локальных стад рыб, уже через несколько часов или суток оказывающиеся вне опасности. Наименее страдают от загрязнения обитатели пе-лагиали, а наибольшая гибель особей происходит у оседлых немигрирующих группировок бентофагов.[ ...]

В тепловых источниках движение происходит за счет тепловой энергии, подводимой к источнику. Вредные выделения распространяются в виде направленного потока - конвективной струи, как правило, турбулентной. Динамическим называется источник, вредные выделения от которого распространяются в виде загрязненной струи, обладающей некоторой начальной скоростью истечения. Истечение струи происходит за счет избыточного давления внутри объема сосуда, аппарата за счет действия гравитационных сил или нагнетателя. В диффузионных источниках движение происходит за счет градиента концентрации газовой примеси. Направление и интенсивность распространения последней зависят от диффузионных характеристик вещества и турбулентности окружающей среды. Перечисленные типы переноса нередко сочетаются, например, тепловой источник выделяет и газовые примеси.[ ...]

О взаимосвязи роста завязи и роста зародыша и эндосперма можно судить по изменению скоростей роста этих различных частей плода на разных стадиях развития. В некоторых случаях кривая роста плода сигмоидная (например, у яблони), а иногда она имеет две волны (рис. 5.24). У персика изменение скорости роста перикарпа, очевидно, коррелирует с изменениями в скорости роста развивающихся семяи. Стимулирующее влияние развивающихся семян на рост тканей перикарпа, по-видимому, связано, по крайней мере частично, с влиянием образующегося в семенах ауксина. Развивающиеся семена являются богатым источником ауксина, и было показано, что в тканях плода существует градиент концентрации ауксина: наивысшая концентрация ауксина наблюдается в семенах, более низкая - в плаценте и самая низкая - в стенке плода. Такой градиент соответствует представлению о синтезе ауксина в развивающихся семенах и его движении из семян к другим частям плода.[ ...]

Гомогенные системы в воде представляют собой истинные (молекулярные и ионные) растворы различных веществ. Истинные растворы являются термодинамически устойчивыми системами и могут существовать без изменений сколь угодно долго. Несмотря на большое разнообразие соединений, образующих с водой растворы, многие свойства оказываются общими для всех растворов. Так, все растворы электролитов обладают способностью проводить электрический ток, а количественные зависимости, наблюдаемые при электролизе, справедливы для любых растворов. Направленное движение ионов или молекул в растворах происходит не только под влиянием разности потенциалов, но и вследствие градиента концентрации (диффузия). Диффузионный поток растворенного вещества при этом направлен из области с большей концентрацией в область с меньшей концентрацией, а поток растворителя - в обратном направлении. Для всех растворов нелетучих веществ в летучих растворителях характерна более высокая по сравнению с чистым растворителем температура кипения и более низкая температура замерзания. Повышение температуры кипения и понижение температуры замерзания будет тем большим, чем больше концентрация раствора.[ ...]

Для понимания природы и механизма парникового эффекта важно также знать, что вклад одного и того же компонента в общий поток излучения сильно зависит от его распределения в толще атмосферы. Проиллюстрируем это на примере трех главных "парниковых” газов - паров воды, озона и С02. Из рис. 3.1 видно, что полоса поглощения молекулы диоксида углерода с центром при 15 мкм в значительной степени перекрыта полосами водяного пара. Отсюда можно было бы сделать вывод, что роль С02 в поглощении радиации не столь уж и велика. Однако, если мы обратимся к рис. 3.3, на котором приведены полученные в ходе реальных наблюдений в январе 1972 г. вертикальные профили Н,0 и 03, то увидим, сколь велик градиент концентрации паров воды. Напротив, диоксид углерода довольно равномерно перемешан в слое воздуха от примерно 1 до 70 км. Следовательно, выше 2-3 км главным поглотителем восходящего тепловогоИзлучения подстилающей поверхности может оказаться именно С02, и это умозаключение подкрепляется представленными в табл. 3.2 результатами расчетов.[ ...]

Исследования времени диэлектрической релаксации и других свойств, упомянутых выше и зависящих от скоростей молекулярных движений, дают достаточно точные значения скоростей молекулярной переориентации и трансляции в жидкой воде. Общий метод таких исследований состоит в том, что прикладывается напряжение к жидкой воде и измеряется время, необходимое для того, чтобы жидкость пришла в равновесное состояние в присутствии напряжения, или в том, что напряжение снимается и измеряется время, необходимое жидкости для возвращения в исходное состояние равновесия. Для диэлектрической релаксации напряжением является приложенное электрическое поле, для самодиффузии - градиент концентрации изотопа, для вязкости - напряжение сдвига и т. д. Однако подобные исследования свойств воды, зависящих от скоростей молекулярных движений, не дают детальной картины движений молекул воды, и поэтому представляется вероятным, что прежде чем получить такую картину, необходимо дальнейшее развитие фундаментальной теории неравновесных процессов.[ ...]

Между поглощением из почвы воды и минеральных веществ существуют сильные взаимодействия, но по-настоящему жесткая корреляция между ними имеет место лишь при поглощении нитратов. Из всех основных элементов минерального питания растений азот в форме нитрат-ионов (N03”) перемещается в почвенных растворах наиболее беспрепятственно; эти ионы переносятся к поверхности корня общим потоком воды через капилляры. Нитрат-ионы обычно поступают к корню отовсюду, откуда поступает и вода. Вода же быстрее всего поступает к корню в почве, насыщенной водой до (или почти до) значения полевой влагоемкости, а также в крупнопористой почве. Стало быть, именно в этих условиях наибольшей подвижностью будут обладать и нитраты. Зоны пониженной ресурсообеспеченности (ЗПР) по нитратам бывают при этом весьма обширными, а градиенты концентраций нитратов вокруг корней - небольшими. Большие размеры ЗПР повышают вероятность перекрывания ЗПР, порождаемых отдельными корнями. При этом может возникать конкуренция (даже между корнями одного и того же растения): в самом деле, истощение ресурса одним органом начинает сказываться на другом органе лишь тогда, когда они приступают к эксплуатации ресурсов, доступных обоим, т. е. когда их ЗПР перекрываются. Чем ниже содержание доступной воды в почве, тем медленнее перемещается она к корням и тем медленнее поступают к поверхности корня нитрат-ионы. ЗПР при этом становятся меньше, а степень их перекрывания снижается. Таким образом, если воды недостает, то снижается и вероятность того, что между корнями возникнет конкуренция за нитраты.[ ...]

Мембранные методы отличаются типами используемых мембран, движущими силами, поддерживающими процессы разделения, а также областями их применения (табл. 26). Существуют мембранные методы шести типов: микрофильтрация - процесс мембранного разделения коллоидных растворов и взвесей под действием давления; ультрафильтрация - процесс мембранного разделения жидких смесей под действием давления, основанный на различии молекулярных масс или молекулярных размеров компонентов разделяемой смеси; обратный осмос - процесс мембранного разделения жидких растворов путем проникновения через полупроницаемую мембрану растворителя под действием приложенного к раствору давления, превышающего его осмотическое давление; диализ - процесс мембранного разделения за счет различия скоростей диффузии веществ через мембрану, проходящий при наличии градиента концентрации; электродиализ - процесс прохождения ионов растворенного вещества через мембрану под действием электрического поля в виде градиента электрического потенциала; разделение газов - процесс мембранного разделения газовых смесей за счет гидростатического давления и градиента концентрации.

Предметная область: полимеры, синтетические волокна, каучук, резина

Наглядно представить образование в суспензии такого градиента концентрации довольно трудно, благодаря влиянию молекул растворителя. Явление это можно сравнить с поведением смеси двух газов при постоянных температуре и давлении, но с градиентом концентрации того и другого компонента. Рассмотрим плоскость, проведенную через такую газовую смесь перпендикулярно направлению градиента концентрации. Предположим, что концентрация компонента А выше в левой части плоскости и ниже в правой; распределение компонента В должно быть обратное. В единицу времени в левой части плоскости должно приходить в столкновение большее число молекул А, чем в правой; для молекул В справедливо обратное. Следовательно, больше молекул А будет проходить через плоскость слева направо и подобным же образом больше молекул В будет двигаться справа налево. В результате наступит уравнивание концентраций двух компонентов. Этот процесс представляет собой диффузию газов. Если теперь перейти к жидкой суспензии, в которой существует подобный же градиент концентрации взвешенных частичек, то ясно, что можно повторить предыдущее рассуждение, приложив его к движению твердых частичек и молекул растворителя через плоскость, проведенную под прямым углом к градиенту концентрации . Однако общее число частичек в единице объема не остается постоянным, и рассуждение соответственно следует изменить. Ясно, что число молекул растворителя, пересекающих плоскость в направлении от места с высокой концентрацией взвешенных частичек, будет меньше, чем в обратном направлении из-за присутствия частичек, преграждающих путь.

Закон Фика для диффузии в одном направлении связывает положительный поток частиц А с отрицательно направленным градиентом концентрации (постоянная плотность и малая концентрация частиц):

Как отмечалось выше, электроактивные вещества достигают поверхности электрода в результате: 1) диффузии, обусловленной градиентом концентрации между поверхностью электрода и объемом раствора, и 2) электрической миграции заряженных частиц, обусловленной градиентом потенциала между электродом и раствором. Этот миграционный ток необходимо исключить или уменьшить насколько возможно добавлением большого избытка инертного электролита, который не участвует в реакции на электроде. Возникающий при этом предельный ток будет только диффузионным током. Для того чтобы можно было исключить миграционный ток, концентрация инертного электролита должна быть по крайней мере в 50 раз больше концентрации электроактивного вещества.

При идеальном диффузионном токе электроактивное вещество достигает электрода только в результате диффузии, обусловленной градиентом концентрации, возникающим вследствие убыли вещества на электроде. Этот градиент существует на протяжении диффузионного слоя, где концентрация меняется от практически нулевой на поверхности электрода до концентрации, существующей в объеме раствора. Диффузионный ток можно определить по высоте волны на кривой сила тока - напряжение.

Основные законы диффузии были, как известно сформулированы Фиком. Первый закон Фика устанавливает связь между скоростью диффузионного потока / и градиентом концентрации С по расстоянию х от по-

Так как влага может быть удалена из глиняных изделий только путем испарения с поверхности, а из внутренних частей продвигается наружу только под действием силы, связаннойс градиентом концентрации *, то полное устранение усадочной деформации при сушке невозможно. Она может быть, однако, сведена к минимуму при достаточной продолжительности сушки и при соответствующем контроле температуры и влажности, необходимом для устранения неравномерного распределения влаги на поверхности. Такой контроль вместе с тепловым режимом лучше всего достигается при использовании противоточных сушилок, преимущественно туннельного типа. Чем более пластична смесь и более сложна форма, тем более тщательна должна быть сушка **.

При экстрагировании полимерного образца жидкостью с постепенно возрастающей растворяющей способностью в первую очередь растворяются более низкомолекулярные части, а потом остальные Улучшение растворяющей способности достигается путем изменения температуры или состава экстрагирующей жидкости Особенно хорошие результаты получаются при применении колонны с градиентом концентрации и температуры, когда происходит многократное растворение и осаждение полимера

При скорости вращения (4-6)-104 об/мин в ультрацентрифуге развивается центробежное ускорение, равное ~106 g. При таких проведения эксперимента - наблюдение за неравновесным процессом седиментации - называют скоростной седиментацией. Измерение положения границы 16 и ее смещения во времени проводится с помощью оптических схем (см. стр. 160), что позволяет рассчитать коэффициент седиментации : „ _ \ Лт_ _ 1 d In r

Вследствие теплового движения макромолекул в растворе происходит перемещение (диффузия) растворенного вещества в направлении от большей концентрации к меньшей. Если осторожно "наслоить" на поверхность раствора полимера с концентрацией С\ растворитель (Со), то постепенно граница раздела А-А будет размываться (рис. 1.11). Молекулы растворителя будут диффундировать в направлении х в раствор, а макромолекулы - в противоположном направлении , в слой растворителя. Изменение концентрации на отрезке dx называется градиентом концентрации. Скорость изменения концентрации в результате диффузии (скорость диффузии) описывается соотношением

При контакте катеонита вида (НМ)ж с разбавленным раствором сильного электролита М+А~ величина [М+] в ионите будет значительно больше, чем [М+] в растворе, а [А~~] - меньше [А~]. Вследствие того, что концентрация их в двух фазах различна, небольшие подвижные ионы будут стремиться выравнивать ее путем диффузии, а это приведет к нарушению электронейтральности раствора, к возникновению положительного пространственного заряда в растворе и отрицательного в ионите. В результате установится равновесие Доннана между градиентом концентрации, вызванным диффузией, и электростатическим потенциалом, препятствующим ей, и на границе катионит-раствор (рис. 191) Рис. 191. Схема распределения заря-возникнет разность потенциалов - доннановский потенциал

Диффузионные явления при формировании системы адгезив - субстрат весьма разообразны. К ним относятся поверхностная диффузия адгезива, самодиффузия в слое адгезива, иногда происходит объемная одно- или двусторонняя диффузия через границу раздела адгезив - субстрат. Кроме того, перечисленные процессы имеют различные механизмы . Например, различают активированную, полуактивированную и неактивированную диффузию. Ниже эти различные процессы будут рассмотрены более подробно. >> Часто полагают, что движущей силой диффузии является градиент концентрации. Однако перемещение, вызванное градиентом концентрации и приводящее к постепенной гомогенизации системы, не исчерпывает все возможные проявления этого сложного процесса. Весьма часто при диффузии происходит не выравнивание концентраций, а, наоборот, дальнейшее разделение компонентов системы. Поэтому более правильно считать, что движущей силой диффузии является разность термодинамических потенциалов, и перенос вещества путем диффузии сопровождается понижением свободной энергии системы. Выравнивание термодинамических потенциалов и приближение к термодинамическому равновесию достигается за счет теплового движения атомов (молекул). Термодинамический потенциал можно разложить на энергетическую и энтропийную составляющие. Механизм диффузии зависит от соотношения этих составляющих. В некоторых случаях внутренняя энергия системы при диффузии не изменяется, и