Химические свойства карбоновых кислот. Химические свойства карбоновых кислот и методы получения Получение солей карбоновых кислот

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метан муравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p → 4CH 3 COOH + 2H 2 O

н-бутан уксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуол бензойная кислота

5. Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p → HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p → CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 —CN метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

13.1.1. Окисление углеводородов . Существует два способа: окисление низших алканов C 4 -C 8 преимущественно до уксусной кислоты и окисление твердого парафина с образованием синтетических жирных кислот (СЖК) с прямой цепью углеродных атомов С 10 -С 20 , являющихся сырьем для синтеза ПАВ (поверхностно-активных веществ).

Процесс протекает в жидкой фазе при нагревании или в присутствии катализаторов. При окислении алканов происходит деструкция по связям между вторичными углеродными атомами, поэтому из н-бутана образуется главным образом уксусная кислота, а в качестве побочных продуктов – метилэтилкетон и этилацетат.

13.1.2.Синтезы на основе оксида углерода (II). Карбоновые кислоты получают на основе оксида углерода реакцией карбонилирования:

Присоединение по двойной связи при кислотном катализе всегда протекает по правилу Марковникова, вследствие этого только из этилена получается неразветвленная кислота, а из его гомологов - α-метилзамещенные кислоты. Особый интерес данный метод представляет для синтеза кислот с третичным радикалом (неокислот) из разветвленных олефинов (реакция Коха):

Механизм реакции состоит в предварительном протонировании алкена кислотой с образованием иона карбения, его взаимодействия с СО с получением ацилий – катиона и реакции последнего с водой с образованием карбоновой кислоты:

Неокислоты и их соли обладают очень высокой растворимостью и вязкостью, а их сложные эфиры - стабильностью к гидролизу, что обеспечивает им широкое применение в ряде отраслей.

Карбонилирование спиртов катализируется комплексами металлов (Ni, Со, Fe, Pd). Процесс реализован в промышленности для синтеза уксусной кислоты из метанола и характеризуется высокими экономическими показателями.



Кислоты также получают окислением альдегидов (продукт оксосинтеза).

Лабораторные способы получения карбоновых кислот

Окисление алканов.

Окисление алкенов.

13.2.3. Окисление первичных спиртов .

13.2.4. Окисление альдегидов и кетонов . Альдегиды окисляются значительно легче, чем кетоны. Кроме того, окисление альдегидов приводит к образованию кислот с тем же числом углеродных атомов, в то время как окисление кетонов протекает с разрывом углерод – углеродных связей (образуются две кислоты или кислота и кетон):

Окислителями служат перманганат или бихромат калия. Окисление кетонов требует более жестких условий, чем альдегидов.

13.2.5. Гидролиз нитрилов. Нитрилы получают взаимодействием галогеналканов с цианистым калием, проводят гидролиз водными растворами кислот или щелочей. В кислой среде азот выделяется в виде соли аммония:

в щелочной - в виде гидроксида аммония, который разлагается с выделением аммиака, кислота же получается в виде соли:

13.2.6. Синтез Гриньяра. При взаимодействии магнийорганических соединений с диоксидом углерода образуются соли карбоновых кислот:

Под действием сильной кислоты (обычно НСl) соль превращается в кислоту:

Гидролиз жиров

Жиры - сложные эфиры карбоновых кислот и глицерина (триглицериды). Карбоновые кислоты, входящие в состав жиров имеют углеродную цепь от 3 до 18 углеродных атомов.

Кипячение жиров или масел с водными растворами щелочей (NaOH, КОН) приводит к получению солей карбоновых кислот и глицерина.

Эта операция называется омылением, так как соли карбоновых кислот используют для изготовления мыла.

Гидролиз производных карбоновых кислот.

Физические свойства

Низшие кислоты с числом атомов углерода до 3 – легколетучие бесцветные жидкости с характерным острым запахом, смешиваются с водой в любых соотношениях. Большинство кислот С 4 – С 9 – маслянистые жидкости с неприятным запахом. Растворимость в воде сильно уменьшается с ростом молярной массы. Кислоты от С 10 и выше – твердые вещества, нерастворимые в воде. Плотности муравьиной и уксусной кислот больше единицы, остальных – меньше единицы. Температура кипения возрастает с увеличением молярной массы, при одном и том же числе углеродных атомов кислоты нормального строения кипят выше, чем кислоты с разветвленным углеродным скелетом. Сравнение температур кипения кислот и спиртов с одинаковым числом углеродных атомов показало, что кислоты кипят при значительно более высоких температурах, чем спирты. Это свидетельствует о более высокой ассоциации молекул кислот по сравнению со спиртами за счет образования водородных связей.

Карбоновые кислоты, как и спирты, способны образовывать водородные связи. Если акцептором является достаточно сильное основание, образование водородной связи предшествует полному переносу протона к основанию. По Бренстеду, соединение, являющееся донором водорода, считают «кислотой». Будет ли данное соединение «донором водорода» («кислотой»), зависит от природы «акцептора водорода» («основания»). Чем сильнее основание, тем больше вероятность того, что данное соединение будет вести себя по отношению к нему как кислота:

Межмолекулярные водородные связи, возникающие между молекулами карбоновых кислот, настолько прочны, что даже в газообразном состоянии значительная часть молекул существует в виде димеров:

С ростом углеводородной цепи способность кислот к образованию водородных связей уменьшается.

Окисление насыщенных углеводородов кислородом на специальных катализаторах до карбоновых кислот осуществляют в промышленности, однако селективностью этот способ не отличается. Как правило, получаются смеси карбоновых кислот, поскольку при окислении происходит разрыв различных углерод-углеродных связей.

Значительно более селективным является окисление алкенов сильными окислителями. При нагревании алкенов, имеющих по одному атому водорода у каждого атома углерода двойной связи, со щелочным раствором перманганата калия образуется смесь двух карбоновых кислот. Если же алкен симметричный, то образуются две молекулы одной карбоновой кислоты. Такое же окисление можно осуществить и при нагревании алкенов с концентрированной азотной кислотой.

Аналогично при окислении щелочным раствором перманганата калия алкинов получают карбоновые кислоты. Так, например, уксусную кислоту можно получить, окисляя либо 2-бутен, либо 2-бутин.

Алкилбензолы окисляют до бензойной кислоты либо кислородом на катализаторах (в промышленности), либо нагреванием с перманганатом калия. Например, кипячение толуола с водным раствором перманганата калия с последующим подкислением раствора приводит к бензойной кислоте.

Карбоновые кислоты могут быть получены также окислением первичных спиртов или альдегидов. В качестве окислителей обычно используют соединения хрома в высшей степени окисления, например, хромовый ангидрид, перманганат калия в щелочной среде, концентрированную азотную кислоту. Альдегиды легко окисляются и другими окислителями, напрмер, аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

1.2. Синтез карбоновых кислот из галогенопроизводных

1.2.1.Синтез карбоновых кислот через нитрилы

Алкилгалогениды взаимодействием с цианидом натрия превращают в алкилцианиды, которые являются нитрилами карбоновых кислот. Последние гидролизуют в кислой среде до карбоновых кислот.

Таким образом, происходит двухстадийное замещение атома галогена в молекуле галогенопроизводного на карбоксильную группу. Так, для получения валериановой кислоты (5 атомов углерода) необходимо исходить из бутилгалогенида.

1-бромбутан нитрил валериановая кислота

валериановой кислоты

1.2.2. Синтез карбоновых кислот реакцией Гриньяра

Реактивы Гриньяра, которые получают из галогенопроизводных взаимодействием с металлическим магнием, представляют собой нуклеофильные реагенты. Поэтому для синтеза из них карбоновых кислот используют реакцию карбоксилирования с помощью электрофильного диоксида углерода.

Для получения этим методом бензойной кислоты в качестве исходного галогенопроизводного необходимо взять, например, бромбензол, который реакцией с магнием, последующим взаимодействием фенилмагнийбромида с диоксидом углерода и заключительным гидролизом магниевой соли превращают в бензойную кислоту.

1.3. Гидролиз производных карбоновых кислот

Подобно нитрилам и солям, о гидролизе которых речь уже шла, и другие производные карбоновых кислот гидролизуются до карбоновых кислот. Реакции могут катализироваться как кислотами, так и щелочами. Например, при гидролизе метилового эфира пропановой кислоты, катализируемом сильной минеральной кислотой, образуется пропановая кислота и метанол.

При нагревании ацетанилида (фениламида уксусной кислоты) с водным раствором едкого натра получается ацетат натрия и анилин.

Гидролиз молекулы ангидрида бензойной кислоты приводит к образованию двух молекул бензойной кислоты.

Подробнее о катализе и механизме гидролиза речь будет идти в разделах, посвященных производным карбоновых кислот

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

ОПРЕДЕЛЕНИЕ

Органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом, называют карбоновыми кислотами .

Первые три члена гомологического ряда карбоновых кислот, включая пропионовую кислоту, — жидкости, имеющие резкий запах, хорошо растворимые в воде. Следующие гомологи, начиная с масляной кислоты, — также жидкости, обладающие резким неприятным запахом, но плохо растворимые в воде. Высшие кислоты, с числом атомов углерода 10 и более, представляют собой твердые вещества, без запаха, нерастворимые в воде. В целом, в ряду гомологов с увеличением молекулярной массы уменьшается растворимость в воде, уменьшается плотность и возрастает температура кипения (табл. 1).

Таблица 1. Гомологический ряд карбоновых кислот.

Получение карбоновых кислот

Карбоновые кислоты получают окислением предельных углеводородов, спиртов, альдегидов. Например, уксусную кислоту - окислением этанола раствором перманганата калия в кислой среде при нагревании:

Химические свойства карбоновых кислот

Химические свойства карбоновых кислот обусловлены в первую очередь особенностями их строения. Так, растворимые в воде кислоты способны диссоциировать на ионы:

R-COOH↔R-COO — + H + .

Благодаря наличию в воде иона H + они имеют кислый вкус, способны менять окраску индикаторов и проводить электрический ток. В водном растворе эти кислоты - слабые электролиты.

Карбоновые кислоты обладают химическими свойствами, характерными для растворов неорганических кислот, т.е. взаимодействуют с металлами (1), их оксидами (2), гидроксидами (3) и слабыми солями (4):

2CH 3 -COOh + Zn → (CH 3 COO) 2 Zn + H 2 (1);

2CH 3 -COOH + CuO→ (CH 3 COO) 2 Cu + H 2 O (2);

R-COOH + KOH → R-COOK + H 2 O (3);

2CH 3 -COOH + NaHCO 3 → CH 3 COONa + H 2 O + CO 2 (4).

Специфическое свойство предельных, а также непредельных карбоновых кислот, проявляемое за счет функциональной группы, — взаимодействие со спиртами.

Карбоновые кислоты взаимодействуют со спиртами при нагревании и в присутствии концентрированной серной кислоты. Например, если к уксусной кислоте прилить этиловый спирт и немного серной кислоты, то при нагревании появляется запах этилового эфира уксусной кислоты (этилацетата):

CH 3 -COOH + C 2 H 5 OH ↔CH 3 -C(O)-O-C 2 H 5 + H 2 O.

Специфическое свойство предельных карбоновых кислот, проявляемое за счет радикала, — реакция галогенирования (хлорирования).


Применение карбоновых кислот

Карбоновые кислоты служат исходным сырьем для получения кетонов, галогенангидридов, виниловых эфиров и других важных классов органических соединений.

Муравьиная кислота широко применяется для получения сложных эфиров, используемых в парфюмерии, в кожевенном деле (дубление кож), текстильной промышленности (как протрава при крашении), в качестве растворителя и консерванта.

Водный раствор (70-80%-ной) уксусной кислоты называется уксусной эссенцией, а 3-9%-ный водный раствор - столовым уксусом. Эссенция нередко используется для получения уксуса в домашних условиях путем разведения.

Примеры решения задач

ПРИМЕР 1

Задание С помощью каких химических реакций можно осуществить следующие превращения:

а) CH 4 → CH 3 Cl → CH 3 OH → HCHO → HCOOH → HCOOK.

Напишите уравнения реакций, укажите условия их протекания.

Ответ а) Хлорирование метана на свету приводит к получению хлорметана:

CH 4 + Cl 2 →CH 3 Cl + HCl.

Галогенпроизводные алканов подвергаются гидролизу в водной или щелочной среде с образованием спиртов:

CH 3 Cl + NaOH→CH 3 OH + NaCl.

В результате окисления первичных спиртов, например, дихроматом калия в кислой среде в присутствии катализатора (Cu, CuO, Pt, Ag) образуются альдегиды:

CH 3 OH+ [O] →HCHO.

Альдегиды легко окисляются до соответствующих карбоновых кислот, например, перманганатом калия:

HCHO + [O] →HCOOH.

Карбоновые кислоты, проявляют все свойства, присущие слабым минеральным кислотам, т.е. способны взаимодействовать с активными металлами с образованием солей:

2HCOOH+ 2K→2HCOOK + H 2 .

ПРИМЕР 2

Задание Напишите уравнения реакций между следующими веществами: а) 2-метилпропановой кислотой и хлором; б) уксусной кислотой и пропанолом-2; в) акриловой кислотой и бромной водой; г) 2-метилбутановой кислотой и хлоридом фосфора (V). Укажите условия протекания реакций.
Ответ а) в результате реакции взаимодействия между 2-метилпропановой кислотой и хлором происходит замещение атома водорода в углеводородном радикале, находящемся в a-положение; образуется 2-метил-2-хлорпропановая кислота

H 3 C-C(CH 3)H-COOH + Cl 2 → H 3 C-C(CH 3)Cl-COOH + HCl (kat = P).

б) в результате реакции взаимодействия между уксусной кислотой и пропанолом-2 происходит образование сложного эфира - изопропиловый эфир уксусной кислоты.

CH 3 -COOH + CH 3 -C(OH)H-CH 3 → CH 3 -C(O)-O-C(CH 3)-CH 3 .

в) в результате реакции взаимодействия между акриловой кислотой и бромной водой присоединение галогена по месту двойной связи в соответствии с правилом Марковникова; образуется 2,3-дибромпропановая кислота

CH 2 =CH-COOH + Br 2 → CH 2 Br-CHBr-COOH

г) в результате реакции взаимодействия между 2-метилбутановой кислотой и хлоридом фосфора (V) образуется соответствующий хлорангидрид

CH 3 -CH 2 -C(CH 3)H-COOH + PCl 5 →CH 3 -CH 2 -C(CH 3)H-COOCl + POCl 3 + HCl.