Состояние полимеров. Релаксационные (физические) состояния полимеров. По отношению к нагреву

Гибкость цепных молекул обусловливает существование трёх физических состояний - стеклообразного, высокоэластического и вязкотекучего. Стеклообразное и вязкотекучее состояния наблюдаются и в низкомолекулярных веществах. Высокоэластическое состояние присуще только полимерам. Каждому физическому состоянию соответствуют свои механические, электрические, физические свойства. Наблюдая изменение соответствующих характеристик, например, модуля упругости, деформируемости, теплоёмкости, теплопроводности, тангенса угла диэлектрических потерь и пр., можно определить температурные области существования физических состояний конкретного полимера. Часто для изучения физических состояний полимеров проводят термомеханические исследования, то есть изучают деформацию полимера в зависимости от температуры Т при постоянных нагрузках Р и времени действия нагрузки.

Для аморфного полимера при переходе из одного физического состояния в другое ряд физических характеристик изменяется, однако фазовое состояние не изменяется. Более того, высокоэластическое состояние по многим показателям ближе к жидкому агрегатному состоянию, чем к твёрдому. Для выяснения причин, вызывающих различия деформационных свойств полимеров в различных физических состояниях, рассмотрим, что происходит с полимером в этих состояниях.

Во вязкотекучем состоянии под действием приложенной к расплаву силы макромолекулы перемещаются друг относительно друга. Однако, в отличие от низкомолекулярных веществ, это перемещение осуществляется ступенчато, оно складывается из ряда перемещений отдельных частей гибких макромолекул и напоминает движение червей. Часть макромолекулы, способную в определённых пределах к самостоятельному перемещению, независимо от перемещения самой макромолекулы в целом, называют сегментом, тем самым подчёркивая аналогию с движением червей. Таким образом, в вязкотекучем состоянии за время действия силы макромолекулы успевают переместиться целиком и занять новое равновесное состояние. Так осуществляется течение полимеров.

В высокоэластическом состоянии за время действия силы макромолекулы не успевают перемещаться целиком, происходит только движение сегментов. После снятия силы сегменты возвращаются в исходное состояние. Так осуществляются большие обратимые деформации полимеров.

По мере понижения температуры вязкость полимера растёт, что затормаживает сегментальное движение. При достижении вязкости 10 12 - 10 13 Па сегментальное движение становится невозможным (при прежних временах действия прежней силы) и полимер будет находиться в стеклообразном состоянии. Агрегативно это соответствует твёрдому состоянию.

Тот или иной тип физического состояния зависит, следовательно, как от температуры, так и от величины и продолжительности действия силы (скорости приложения силы). Всё определяется тем, насколько успевают макромолекулы отреагировать на изменение напряжённого состояния или, как говорят, отрелаксировать.

Понятие «релаксация» применимо к любым процессам и обозначает переход из неравновесного состояния в равновесное. При этом в системе уменьшаются внутренние напряжения, вызванные изменением внешних условий. Само слово «релаксация» происходит от латинского слова relaxatio - ослабление. Существует простая зависимость, связывающая время механической релаксации р с температурой Т и напряжением.

р = 0 . е (3.1)

где 0 10-11с; U - энергия активации вязкого течения; - коэффициент; R - универсальная газовая постоянная. Как видно, Т и уменьшают время релаксации.

Именно уменьшением времени релаксации при больших напряжениях до уровня, соответствующего высокоэластическому состоянию, объясняются наблюдаемые большие деформации стеклообразных полимеров. Эти деформации получили название «вынужденно-эластические».

Вынужденно-эластическая деформация по своей природе является высокоэластической и обратимой. Обратимость осуществится, если полимер нагреть выше Т с, т.е., если ускорить релаксационные процессы.

Высокоэластическая деформация имеет энтропийный характер, т.е. связана с изменением конформации макромолекул. При деформации происходит выпрямление свёрнутых макромолекул и энтропия системы уменьшается. При нагревании каучукоподобного тела тепловое движение увеличивает беспорядок, иначе говоря, приводит к возрастанию энтропии. Следовательно, при нагревании резины должно возрастать сопротивление деформированию. Действительно, с ростом температуры модуль эластичности каучукоподобных полимеров увеличивается.

Как известно, энтропия системы есть логарифм термодинамической вероятности S = k ln W. Для применения этого уравнения к рассмотрению высокоэластической деформации делается предположение о структуре полимера, как сетчатой, при этом не важно, будет ли эта сетка химической или физической. Это нужно для исключения процессов течения. Место соединения нескольких цепей называется узлом сетки, а молекулярная масса отрезков цепей между узлами сетки обозначается М с. Частотой сетки N тогда будет N = d/M c , где d - плотность полимера.

Между модулем эластичности Е в-э, плотностью, М с и температурой Т существует простое соотношение:

Е в-э = 3RTd/М с. (1)

Таким образом, по значению Ев-э можно рассчитать параметры сетки.

В действительности полностью исключить процесс течения при наличии физической сетки нельзя и высокоэластической деформации сопутствует некоторая доля пластической деформации.

В реальных эластомерах высокоэластическая деформация не является чисто энтропийной, но сопровождается изменением внутренней энергии. Это объясняется тем, что при деформации происходит изменение объёма, сопровождающееся изменением средних расстояний между полимерными цепями, при этом изменяется их энергия взаимодействия.

Полимеры не однородны по молекулярной массе, более того, они содержат два вида структурных элементов - звенья цепи и сами цепи. Размеры их значительно отличаются, отличается и их подвижность. Время релаксации звеньев составляет 10 -4 - 10 -6 с, а время релаксации цепей очень велико - от минут до лет. По этой причине высокоэластическая деформация по своей природе не равновесна, т.е. она развивается во времени и достижение равновесного значения может, в зависимости от температуры, происходить очень долго. Аналогично, после снятия нагрузки очень долго происходит восстановление прежней, исходной формы образца. Для линейных полимеров полное восстановление исходной формы может вообще не наблюдаться из-за наличия пластической деформации.

Разграничить виды деформации можно, изучая кривые ползучести (-). Ползучесть - это явление постепенного развития деформации. Для разделения общей деформации на виды проводят испытания в режиме нагружение - разгрузка.

На этом рисунке участок ОАВD соответствует изменению относительной деформации при нагружении, а участок DCE - при разгружении. Участок ОА отвечает условно - упругой деформации, участок АВ характеризует одновременно развивающиеся высокоэластическую деформацию и деформацию течения, участок ВD - необратимая (пластическая) деформация, являющаяся процессом установившегося течения.

Рис.

общ = упр + в-э + необр. (2)

Если продолжить прямую ВD до пересечения с осью ординат, то из треугольника А 1 DD 1 можно найти величину относительной деформации течения

d/dt = /t = A 1 D 1 /D 1 D, откуда A 1 D 1 = . (3)

По кривой ползучести можно не только разделить общую деформацию на виды, но и рассчитать целый ряд важных характеристик. Это:

  • 1) вязкость = т /(d/d/t); (4)
  • 2) Е упр = т / 0 = т /ОА; (5)
  • 3) Е в-э = т / в-э = т /АА 1 (6)

Здесь т - действующее напряжение.

Ползучесть проявляется не только в высокоэластическом состоянии, но и в стеклообразном. Казалось бы, в стеклообразном состоянии времена релаксации очень велики и, кроме упругой, других видов деформации при небольших напряжениях не должно быть. Тем не менее, ползучесть наблюдается и в стеклообразном состоянии. Это объясняют наличием быстрых релаксационных процессов, обусловливающих деформацию, по своей природе являющуюся как бы промежуточной между упругой и вынужденно-эластической. Они получили названия деформации упругого последействия.

К явлениям упругого последействия, кроме ползучести, относятся:

зависимость модуля упругости Е упр от скорости деформирования или частоты воздействия, механические потери (механический гистерезис);

релаксация напряжения при постоянной деформации.

Отличием ползучести полимеров в стеклообразном состоянии от ползучести в высокоэластическом состоянии является значительно меньшая величина необратимой деформации, которая может развиться только при очень больших временах действия нагрузки.

Если образец аморфного полимера быстро растянуть и закрепить в этом положении, то напряжение в образце с течением времени уменьшается (по экспоненте). Это вызвано тем, что под действием этого напряжения макромолекулы, не успевшие изменить конформацию за время деформирования, изменяют конформацию - вытягиваются. В неполярных полимерах это происходит быстрее, чем в полярных, так как в неполярных межмолекулярное взаимодействие слабее.

Механический гистерезис - связан с несовпадением скоростей деформации при нагружении и разгрузке, при этом происходит отставание деформации от напряжения.

Если за время действия нагрузки успела развиться пластическая деформация (вязкое течение), то образец уже никогда самопроизвольно не восстановит своей исходной формы. Если же цикл нагружения был проведён так быстро, что вязкое течение не успело начаться, то вся «остаточная деформация» впоследствии исчезнет.

Площадь петли гистерезиса характеризует необратимо рассеянную в виде тепла механическую энергию.

На примере вынужденно-эластической деформации можно было увидеть, что время релаксации уменьшается не только при увеличении температуры, но и напряжения. Скорость релаксационных процессов также увеличивается при введении в полимер пластификаторов.

Превышает 10 12 -10 13 н·сек/м 2 (10 13 – 10 14 пуаз ) , а – 10 3 -10 4 Мн/м 2 (10 4 -10 5 кгс/см 2 ) .

Переход полимеров из вязкотекучего или высокоэластического состояния в стеклообразное называется стеклованием . Стеклообразное состояние реализуется также в результате процессов, которые обычно к стеклованию не относят:

  • вытяжка или сшивание полимеров, находящихся в высокоэластическом состоянии;
  • выпаривание растворов полимеров или высушивание гелей при температурах ниже (Т с ) или температуры плавления соответственно.

Основная особенность стеклообразного состояния полимеров – его термодинамическая неравновесность. Взаимосвязь между жидким, кристаллическим и стеклообразными состояниями полимеров можно пояснить с помощью диаграммы объем – температура (рисунок 1).

При охлаждении расплава полимера его объем непрерывно уменьшается вследствие того, что в результате молекулярных перегруппировок расплав переходит из одного равновесного состояния в другое. Если скорость охлаждения достаточно мала, пhи некоторой температуре Т к происходит кристаллизация, сопровождающаяся скачкообразным уменьшением объема (линия АБ на рисунке 1 ). Для многих полимеров при высокой скорости охлаждения кристаллизация не успевает произойти, и вещество остается в переохлажденном жидком состоянии, неравновесном по отношению к кристаллическому (линия АВ на рисунке 1 ). При Т с молекулярное движение становится настолько медленным, что даже за очень длительное время эксперимента перегруппировки не успевают происходить, то есть вещество стеклуется, затвердевает. При температурах ниже Т с стеклообразное состояние неравновесно по отношению как к равновесному жидкому состоянию (пунктирная линия ВД на рисунке 1 ), так и к кристаллическому состоянию.

Термодинамическая неравновесность стеклообразного состояния приводит к тому, что при постоянной температуре Т отж с течением времени структура стекла изменяется, стремясь к равновесной (явление структурной релаксации), с соответствующим изменением свойств (линия ГД на рисунке 1 ). Достижение равновесной структуры практически возможно лишь в узком температурном интервале, когда Т отж меньше Т с на 15-20⁰С.

В стеклообразном состоянии сегментальная подвижность сильно ограничена, однако происходят релаксационные процессы, связанные с вращением концевых или боковых групп, переориентацией небольших участков молекулярной цепи в области дефектов структур, наgример, на поверхности микротрещин. Соответствующие релаксационные переходы можно наблюдать по появлению максимумов на температурных зависимостях физических свойств, например механических и диэлектрических потерь.

По механическому поведению стеклообразное состояние можно разделить на хрупкое , которое реализуется при температурах ниже температуры хрупкости , и нехрупкое . Нехрупкое стеклообразное состояние характеризуется тем, что при достаточно медленном растяжении при напряжениях, превышающих предел , происходит вытяжка полимера. Молекулярная ориентация, возникшая при этом, сохраняется после разгрузки практически неограниченно долго при Т<Т с . Наряженные полимерные стекла с течением времени самопроизвольно растрескиваются.

Список литературы:
Кобеко П.П., Аморфные вещества, М.-Л., 1952 ;
Каргин В.А., Слонимский Г.Л., Краткие очерки по физико-химии полимеров, 2 изд., М., 1967;
Ферри Дж., Вязкоупругие свойства полимеров, пер. с англ., М., 1963

В полимерных твердых телах различают фазовые переходы, связанные со структурными превращениями, и релаксационные, связанные с изменением интенсивности внутримолекулярной подвижности.

Механические свойства полимеров зависят от структуры, физического состояния, температуры и скорости воздействия. Физические состояния полимеров непосредственно связаны с физической структурой и интенсивностью внутримолекулярного теплового движения в них. Переход из одного физического состояния в другое называют температурным переходом.

В зависимости от температуры, полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. Схема деформируемости полимера, в зависимости от температуры, приведена на рис.3. 4.

Рис. 3. 4. Термомеханическая кривая полимера

Переход из одного состояния в другое происходит в некотором интервале температур. Средние температуры, при которых наблюдается изменение физического состояния, называются температурами перехода. Температура перехода из стеклообразного состояния в высокоэластическое (и обратно) называется температурой стеклования (Т с), а температура перехода из высокоэластического состояния в вязкотекучее (и обратно) называется температурой текучести (Т т).

Если полимер находится в кристаллическом состоянии, то ниже температуры кристаллизации (перехода аморфной фазы в кристаллическую) он находится в твердом состоянии, но обладает, так же как и аморфный полимер, различной деформируемостью ниже и выше температуры стеклования. Выше температуры кристаллизации кристаллическая часть полимера плавится, и термомеханическая кривая почти скачкообразно достигает высокоэластических деформаций, характерных для некристаллического полимера. Если полимер слабо закристаллизован, то выше температуры стеклования он деформируется практически как аморфный полимер.

Повышение температуры облегчает деформируемость полимера. Поэтому температуры перехода являются основными характеристиками при выборе температуры переработки и эксплуатации полимерных материалов.

Рассмотрим особенности трех состояний полимеров.

Стеклообразное состояние. Температура стеклования разделяет стеклообразное и эластическое состояния аморфного полимера. Ниже температуры стеклования Т с, происходит замораживание кооперативной подвижности независимых элементов основной цепи макромолекул – сегментов и фиксирование неравновесной упаковки макромолекул – застекловывание полимера.

При понижении температуры ниже Т с уменьшается амплитуда колебаний и количество флуктуаций, приводящих к перескоку макромолекулы из одного положения в другое. Это, в свою очередь, приводит к увеличению плотности упаковки молекул и, следовательно, плотности всего образца. При этом подвижность всех сегментов макромолекул становится ограниченной, и полимер переходит в стеклообразное состояние.

Если к такому полимеру приложить деформирующее усилие, то вначале, за счет изменения валентных углов между сегментами, возникает обратимая упругая деформация, величина которой невелика и обычно не превышает нескольких процентов. Как только напряжения станут соизмеримы с величиной межмолекулярных сил, начнется взаимное перемещение сегментов макромолекул. Чтобы подчеркнуть принципиальное различие в механизмах больших деформаций в стеклообразных полимерах и металлах был предложен термин «вынужденная эластичность» для обозначения больших деформаций полимеров. Напряжение, при котором наблюдается переход от начальной упругой к вынужденной деформации, получило название «предела вынужденной эластичности». Предел вынужденной эластичности заметно меняется с изменением скорости деформации. Диаграмма растяжения представлена на рис. 3.5 а.

Рис. 3.5. Диаграммы растяжения полимеров в стеклообразном (а), хрупком (б) и высокоэластическом (в) состояниях: I – область упругих деформаций; II – область вынужденноэластической (а) и высокоэластической (б) деформации

При дальнейшем понижении температуры ниже температуры стеклования в образце наблюдается уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Величина механической энергии, необходимая для активации сегментов и изменения конформации макромолекул, может оказаться выше предела прочности. Полимер разрушается как хрупкое тело при ничтожно малой величине деформации (рис. 3.5, б). Температура, при которой наблюдается это явление, называется температурой хрупкости (Т хр).

Высокоэластическое состояние. Если нагревать застеклованный полимер, то сразу после того, как будет превышена температура стеклования, образец начнет размягчаться и переходить в высокоэластическое состояние. Последнее характеризуется относительно высокой подвижностью сегментов макромолекул. Это приводит к стремлению макромолекул принять самые разнообразные конформации. Наряду с двумя крайними конформациями – полностью выпрямленной и полностью скрученной – существует множество конформаций, обусловленных разной степенью изогнутости макромолекул.

При действии нагрузки макромолекулы, входящие в состав надмолекулярных образований, могут менять свою форму – из скрученных становиться более вытянутыми, что обеспечивает высокую эластичность полимера. После снятия нагрузки тепловое движение более или менее быстро, в зависимости от температуры и величины межмолекулярного взаимодействия, возвратит макромолекулу из вытянутой формы в прежнюю равновесную форму, обеспечив тем самым обратимый характер деформации. Диаграмма деформации такого полимера представлена на рис. 3.5 в.

Вязкотекучее состояние. При дальнейшем повышении температуры выше Т т полимер переходит в вязкотекучее состояние. В этом состоянии он способен необратимо течь под воздействием иногда сравнительно небольших внешних усилий. Процесс вязкого течения обязательно сопровождается раскручиванием макромолекул. Высокая вязкость материала может привести к значительному выпрямлению цепей и их ориентации в направлении приложения силы, что используется для получения ориентированных высокопрочных волокон и пленок.

Определение температур физических переходов в полимерах возможно с помощью термомеханического метода, при котором исследуется зависимость деформации от температуры при постоянных нагрузках. Этот же метод может использоваться для быстрого определения таких важных характеристик полимерных материалов, как температуры стеклования, кристаллизации, начала химического разложения.

При помощи термомеханического метода можно исследовать влияние различных веществ на отверждение полимеров: изучать влияние пластификаторов, наполнителей и других ингредиентов на технологические свойства полимерных материалов. Температуры физических переходов в полимерах могут быть определены также методом дифференциально-термического анализа.

Анализ структуры и физических переходов в термопластичных полимерах, используемых в качестве конструкционных полимерных материалов, позволяет разделить их на три основные группы.

Первая группа - аморфные или трудно кристаллизующиеся полимеры с жесткими макромолекулами, максимальная степень кристалличности которых не превышает 25% и Т с значительно превышает комнатную температуру. К этой группе относятся нерегулярно построенные карбоцепные полимеры: полистирол, полиметилметакрилат, поливинилхлорид, их статистические сополимеры с небольшим числом звеньев другого мономера и ароматические гетероцепные полимеры: простые полиэфиры (полифениленоксид, полисульфон), сложные полиэфиры (поликарбонаты, полиарилаты), полиамиды (фенилон). При комнатной температуре – это жесткие упругие материалы (полимерные стекла), верхний температурный предел эксплуатации которых ограничен Т с. Формование изделий осуществляется при температуре выше Т т (в случае литья или экструзии) или Т с (при штамповке и вытяжке).

Вторая группа кристаллизующиеся полимеры со средней степенью кристалличности, Т с которых довольно близка к комнатной температуре. К этой группе относятся полиметилпентен, политрифторхлорэтилен, пентапласт, алифатические полиамиды. Верхний температурный предел эксплуатации таких полимеров определяется степенью кристалличности и может колебаться от Т с аморфной фазы до температуры плавления (Т пл) кристаллической, а переработка в изделия производится выше Т пл.

Третья группа кристаллизующиеся полимеры с высокой степенью кристалличности, Т с аморфной фазы которых значительно ниже комнатной. К этой группе относятся полиэтилен, полипропилен, полибутен-1, политетрафторэтилен и полиформальдегид. В нормальных условиях в этих полимерах сочетаются свойства, присущие аморфной фазе, находящейся в эластическом состоянии, и жесткой кристаллической фазе. Поэтому в интервале Т с < Т < Т пл их поведение в решающей степени определяется степенью кристалличности. Верхний температурный предел эксплуатации обычно ограничивается Т пл. Ниже Т с аморфной фазы полимеры становятся жесткими и хрупкими полимерными стеклами. Формование изделий литьем или экструзией осуществляется выше Т пл, штамповкой – вблизи Т пл. Механические свойства и степень кристалличности наиболее используемых полимеров приведены в таблице 3.1.

По отношению к нагреву

Полимерные материалы изменяют свои свойства под воздействием температуры. По этому признаку различают термопластичные и термореактивные полимеры.

Термопластичные полимеры (термопласты) при нагреве размягчаются, даже плавятся, при охлаждении затвердевают; этот процесс обратим, Структура макромолекул таких полимеров линейная и разветвленная.

Термореактивные полимеры (термореакты) на первой стадии образования имеют линейную структуру и при нагреве размягчаются, затем вследствие протекания химических реакций затвердевают (образуется пространственная структура) и в дальнейшем остаются твердыми. Отвержденное состояние полимера называется термостабильным.

Механические свойства и степень кристалличности наиболее используемых полимеров приведены в таблице 3.1.


Полимеры могут существовать в четырех физических состояниях – трех аморфных и одном кристаллическом.

Каждому температурному интервалу у полимера соответствует свое физическое состояние, которое определяется особенностями подвижности атомов, групп атомов, сегментов макромолекул и надмолекулярных структур при данной определенной температуре.

У полимера переход из одного физического состояния в другое происходит во времени. Явления перехода вещества из одного равновесного состояния в другое во времени называют релаксационными . Скорость релаксационных процессов характеризуют временем релаксации .

У полимеров время релаксации может быть очень большим и оно существенно влияет на их поведение.

Аморфные полимеры могут находиться в трех релаксационных (физических) состояниях:

– стеклообразном,

– высокоэластическом,

– вязкотекучем.

Кристаллические полимеры при повышении температуры также переходят в другое физическое состояние; сначала в высокоэластическое, а затем в вязкотекучее.

Стеклообразный полимер и высокоэластический полимер находятся в твердом агрегатном состоянии, вязкотекучий полимер находится уже в жидком агрегатном состоянии (расплав полимера). Высокоэластическое состояние – особое состояние, существующее только у полимеров.

Переходы у аморфных полимеров из одного физического состояния в другое – нефазовые, переход из кристаллического состояния в высокоэластическое является фазовым переходом.

Переходы полимера из одного физического состояния в другое протекают в некотором интервале температур. Средние температуры этих интервалов называют температурой перехода . Температуру перехода из стеклообразного состояния в высокоэластическое и обратно называют температурой стеклования (Т С). Т С = Т Р, где Т Р – температура размягчения.

Температуру перехода из высокоэластического состояния в вязкотекучее и обратно называют температурой текучести Т Т. Интервал Т С – Т Т соответсвует высокоэластическому состоянию. Температуру фазового перехода из кристаллического состояния в аморфное (в высокоэластическое или непосредственно в вязкотекучее) называют температурой плавления Т ПЛ. Температуру фазового перехода из аморфного состояния в кристаллическое называют температурой кристаллизации Т КР. У полимеров Т ПЛ > Т КР.

Каждому физическому состоянию полимеров соответствует свое поведение под нагрузкой, т.е. вид деформации .

Границы сосуществования физических состояний полимеров можно установить с помощью термомеханического метода. При помощи этого метода по термомеханической кривой (ТМ-кривой) определяют температуру перехода.

ОРИЕНТИРОВАННОЕ СОСТОЯНИЕ ПОЛИМЕРОВ

состояние тел из линейных полимеров, характеризуемое тем, что оси достаточно протяженных распрямленных участков цепных макромолекул, составляющих эти тела, расположены преим. вдоль нек-рых направлений - осей ориентации. Так, в пленках полимерных могут реализоваться виды плоскостной ориентации: двухосная, радиальная. Простейший и наиб. распространенный вид ориентации линейных полимеров - одноосная ориентация.

Ориентир. широко распространены в растит. мире (напр., хлопок, лен) и животном (сухожилия, мышечные ткани, шерсть и др.). Практически всюду в природе, где требуются прочные и гибкие элементы структуры, они формируются из ориентир. полимеров.

В технике ориентир. получают в осн. ориентац. вытягиванием (на десятки - тысячи процентов) изотропных полимерных тел, нагретых выше т-р стеклования. В результате цепные макромолекулы, хаотически (статистически) ориентированные в исходном теле, под воздействием внеш. направленного растягивающего усилия приобретают ту или иную степень ориентации. В аморфном гибкоцепном полимере ориентир. состояние является неравновесным и, чтобы его зафиксировать, необходимо охладить полимер ниже т-ры стеклования, не снимая растягивающего напряжения. В случае гибкоцепных кристаллизующихся полимеров О. с. п. можно считать равновесным ниже т-ры плавления кристаллитов и снятие растягивающего напряжения при т-ре вытяжки не ведет к разориентации, т. к. кристаллиты образуют ориентир. каркас, сохраняющий аморфные участки полимерного тела в О. с. п.

При получении ориентир. гибкоцепных полимеров двухступенчатым методом вначале осуществляют ориентацию р-ра или расплава полимера. Этого достигают созданием потоков с градиентами скорости (поперечным или продольным), в результате чего длинные цепные молекулы ориентируются преим. вдоль направления потока. Происходящая при этом фиксирует достигнутое состояние, что приводит к образованию ориентир. полимера. Послед. вытягивание в твердой фазе доводит полимерный материал (или изделие) до сверхвысокоориентир. состояния.

Для жесткоцепных полимеров О. с. п. является равновесным и достигается двухступенчатым методом: вначале при сравнительно умеренной т-ре вытягиванием из р-ра формуют ориентир. "заготовку", затем следует термообработка при повыш. т-ре, приводящая к значит. увеличению ориентац. порядка в полимере (явление типа направленной кристаллизации).

Ориентир. полимеры содержат характерные надмолеку-лярные образования-фибриллы-с поперечным размером ~ 10-100 нм и протяженностью не менее ~1-10 мкм.

Одноосноориентир. полимерные тела отличаются высокой анизотропией мех., акустич., оптич., электрич. и др. св-в. Поэтому чувствительные к анизотропии методы (напр., дифрактометрия, ЯМР, ЭПР, ИК , акусто-спектроскопия, измерение двулучепреломления) эффективны при изучении ориентир. полимеров. Последним присуща также характерная аномалия термич. расширения: отрицат. коэф. расширения вдоль оси ориентации. Это связано с поперечными колебаниями распрямленных участков цепных молекул, амплитуда к-рых много больше, чем продольных колебаний, а также с конформац. "скручиванием" ориентир. участков макромолекул в аморфных областях, что ведет к сокращению размеров этих областей вдоль оси ориентации полимера. Важное техн. св-во ориентир. полимеров -повыш. при растяжении и жесткость вдоль оси ориентации при сохранении достаточной гибкости. Это обусловлено тем, что вдоль оси ориентации работают гл. обр. хим. связи, в перпендикулярном направлении-межмолекулярные. Так, теоретич. значения и модуля продольной упругости для волокна составляют соотв. 20-30 и 250 ГПа; для техн. ориентир. полимерных волокон 0,5-1,0 ГПа, 20-50 ГПа; для высокоориентир. волокон 5-10 ГПа, 100-150 ГПа, что близко к теоретич. значениям и является большим техн. достижением.

Высокие мех. характеристики в сочетании с низкой плотностью, хим. и термич. стойкостью (этим отличаются жест-коцепные полимеры; они содержат циклич. группы в основных цепях макромолекул) определяют все более широкое использование ориентир. полимерных волокон: тросы, канаты, ткани, армирующие элементы в разнообразных ком-позиц. материалах и др. В технике широко распространены, напр., полиамидные, полиолефиновые, полиэфирные, поли-имидные, полиакрилонитрильные волокна. См. также Волокна химические, Формование химических воллкон.

Лит.: Марихин В. А., Мясникова Л. П., Надмолекулярная структура полимеров. Л., 1977; Сверхвысокомодульные полимеры, под ред. А. Чиферри, И. Уорда, пер. с англ.. Л., 1983. А. И. Слуцкер.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ОРИЕНТИРОВАННОЕ СОСТОЯНИЕ ПОЛИМЕРОВ" в других словарях:

    Состояние тел из линейных полимеров (См. Полимеры), в котором длинные цепные молекулы, составляющие эти тела, имеют преимущественное расположение своих осей вдоль некоторых направлений. Простейший и наиболее часто встречающийся на… …

    Характеризуется тем, что звенья макромолекул образуют структуры с трехмерным дальним порядком. Размер этих структур не превышает неск. мкм; обычно их называют кристаллитами. В отличие от низкомол. в в, полимеры никогда не кристаллизуются нацело,… … Химическая энциклопедия

    Направленное изменение физ. хим. и (или) хим. св в полимеров. Различают М. п.: 1) структурное модифицирование физ. мех. св в без изменения хим. состава полимера и его мол. массы, т. е. изменение надмолекулярной структуры полимера; 2)… … Химическая энциклопедия

    - (пластмассы, пластики), полимерные материалы, формуемые в изделия в пластическом или вязкотекучем состоянии обычно при повыш. т ре и под давлением. В обычных условиях находятся в твердом стеклообразном или кристаллич. состоянии. Помимо полимера… … Химическая энциклопедия

    Сплошные слои полимеров толщиной, как правило, менее 0,5 мм. Изготовляют гл. обр. из синтетич. полимеров (соответствующие пленки, имеющие наиб. практич. значение, рассмотрены в данной статье). Получают П. п. также из прир. полимеров (напр.,… … Химическая энциклопедия

    Материалы на основе вы сокомол. соед.; обычно многокомпонентные и многофазные. П. м. важнейший класс совр. материалов, широко используемых во всех отраслях техники и технологии, в с. х ве и в быту. Отличаются широкими возможностями регулирования… … Химическая энциклопедия

    - (от греч. polymeres состоящий из многих частей, многообразный) химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы (См. Макромолекула)) состоят из большого числа… … Большая советская энциклопедия

    - (р. 20.XI.1932) Сов. физикохимик, чл. кор. АН СССР (с 1987). Р. в с. Верхний Снежет Тульской обл. Окончил Московский ун т (1956). С 1956 работает там же (с 1970 проф.). Одновременно работает (с 1970) в Физико хим. ин те им. Л. Я. Карпова. Осн.… … Большая биографическая энциклопедия

    - (полимеры), характеризуются мол. массой от неск. тысяч до неск. (иногда многих) миллионов. В состав молекул В. с. (макромолекул)входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или… … Химическая энциклопедия

    РД 25.03.001-2002: Системы охраны и безопасности объектов. Термины и определения - Терминология РД 25.03.001 2002: Системы охраны и безопасности объектов. Термины и определения: 2.36.8 аварийное освещение (на охраняемом объекте): Действующее при аварии на объекте только в момент отключения основного освещение, позволяющее… … Словарь-справочник терминов нормативно-технической документации