Теория относительности ее физический и философский смысл. Привет студент. Материя, пространство, время

Дальнейшее углубление понимания сущности О. т. состояло в открытии связи структуры пространства-времени и причинности (ирл. физик А. Робб и др.). Каждому событию отвечает множество событий, на к-рые, оно воздействует (в принципе может воздействовать), – "область его воздействия" в четырехмерном многообразии событий. При этом скорость передачи воздействия ограничена скоростью света. Математически доказывается, что эти области определяются "геометрией" пространства- времени и, обратно, геометрия пространства-времени полностью определяется структурой совокупности этих областей. Коротко говоря, свойства пространства-времени определяются отношениями воздействия одних событий на другие. Это приводит к след. определению самого пространства-времени: пространство-время есть множество всех событий в мире, отвлеченно от всех свойств, кроме тех, к-рые определяются отношениями воздействия одних событий на другие. Этим устанавливается пространств.-врем. и причинно-следств. структуры мира, т.к. воздействие есть элемент причинно-следств. связи. Т.о., движущейся материи, определяемая связью ее элементов через воздействие и взятая только ст. зр. формы (системы отношений), и есть пространств.-врем. структура материи.

О б щ а я О. т. Включение в частную О. т. всемирного тяготения представляло трудности, к-рые были преодолены Эйнштейном путем построения ОТО (1915). Работы Эйнштейна, В. А. Фока и др. привели к след. пониманию ее основ. 1) Структура пространства-времени оказывается такой же, как в в частной О. т., только приближенно и локально (в достаточно малых областях пространства, в течение достаточно короткого времени). В больших областях пространство-время имеет более сложную структуру (математически оно является римановым или, по др. терминологии, псевдоримановым пространством). Соответ-ственно, все выводы частной О. т. верны лишь приближенно и локально. 2) Отличие структуры пространства-времени от принимаемой в частной О. т. определяется распределением и движением масс материи. Точно это выражается уравнением Эйнштейна, связывающим величины, характеризующие указ. отличие ("тензор кривизны"), с величинами, характеризующими распределение и движение масс ("тензор материи"). Отсюда математически выводится, что массы материи должны двигаться так, как если бы между ними действовали силы тяготения по закону, к-рый в первом приближении совпадает с законом тяготения Ньютона. Т. е. массы материи, определяя структуру пространства-времени, определяют через это и свое собств. движение. Поле тяготения есть не что , как отличие структуры пространства-времени от однородной, принятой в частной О. т. Тело, на к-рое не действует никакое др. и собств. влиянием к-рого на структуру пространства-времени можно пренебречь, движется по инерции, но из-за изменений в структуре пространства-времени, вызванных посторонними массами, движение это будет сложным, что классич. толковала как влияние сил тяготения. С точки зрения О. т. тут действуют не особые силы, а происходит движение по инерции в неоднородном пространстве-времени (представляющееся в нем геодезической, т.е. "прямейшей" линией). Применение ОТО к большим частям Вселенной и даже ко Вселенной в целом привело к важным результатам, но оно зависит от выдвигаемых гипотез, что делает выводы спорными, не говоря уже о спорности применения любой теории ко Вселенной в целом (см. Космология).

Подтверждения и обоснования О. т. Частная О.т. имеет многочисл. подтверждения, из к-рых упомянем следующие. (1) Данные, послужившие источником О. т., как, напр., опыт Майкельсона и др. (2) Закон взаимосвязи массы и энергии, всеобщий характер к-рого установлен несомненно, особенно результатами атомной физики. (3) Эйнштейновская зависимость импульса от скорости, проверенная с большой точностью в многочисл. опытах (ускорители заряженных частиц, космич. лучи и др.). (4) Относительность длительности подтверждается измерением "продолжительности жизни" космич. частиц по отношению к Земле и спец. опытами (релятивистский Доплер-эффект). (5) Заключающееся в О. т. о лоренц-инвариантности физич. законов привело к соответствующей формулировке уравнений квантовой механики. Так, появилась, в частности, теория Дирака, к-рая нашла блестящее , а вместе с ней получила, хотя и косвенное, но столь же блестящее подтверждение частная О. т. В связи с атомной техникой частная О. т. приобрела практич. , инженерные расчеты ускорителей и атомных установок опираются на ее результаты. В целом частная О.т. является бесспорно верной теорией, насколько вообще может быть верной физич. теория (уже ОТО показала, что частная О.т. должна считаться только приближенной).

Подтверждением ОТО служит прежде всего то, что она дает закон тяготения в полном согласии с опытом. До ОТО не существовала собственно теория тяготения: закон тяготения Ньютона не был связан с законами механики, основанная на нем теория была чисто феноменологической. ОТО, открыв органич. связь структуры пространства-времени, осн. законов механики и тяготения, тем самым объяснила это последнее. Поэтому неправильно мнение, что подтверждением ОТО служат только сравнительно небольшие эффекты, к-рые она объяснила или предсказала в отличие от того, что следовало из закона Ньютона. Закон тяготения Эйнштейна точнее закона Ньютона, как показала ; предсказанное О. т. влияние тяготения на распространение света и его частоту также подтверждается. Как теория тяготения ОТО является достаточно обоснованной. Применение ее к большим частям Вселенной объясняет фактов (напр., ).

Т о л к о в а н и я О. т. Относительности теория встречала различные возражения и неверные толкования, основанные на непонимании ее содержания в соединении с филос. ошибками. Возражения по поводу ее необоснованности или парадоксальности ее выводов опровергнуты многочисл. экспериментальными и теоретич. результатами. Попытки заменить О. т. теорией, к-рая сохраняла бы старые представления о пространстве и времени, объясняя подтвержденные опытом результаты О.т. спец. механизмами взаимодействия, ничего не дали. Философски они неудовлетворительны, т.к. отрывают пространство и время от материи. Высказывавшиеся мнения, что О.т. идеалистична, нелепы. Во-первых, теория, настолько точно соответствующая действительности, не может быть идеалистической. Филос. ошибки или неточности в ее толковании не могут сделать идеалистическим ее содержание. Во-вторых, в ее построении Эйнштейн исходил из материалистич. принципа, выводя законы пространства и времени из законов движения материи на новом уровне их познания. Если классич. представления о пространстве и времени отвечали законам механики Ньютона, то представления, данные Эйнштейном, опирались на законы электромагнетизма [ср. замечание. Ленина: "это, конечно, сплошной вздор, будто утверждал... обязательно "механическую", а не электромагнитную, не какую-нибудь еще неизмеримо более сложную картину мира..." (Соч., т. 14, с. 267)]. Возражения прртив равноправности инерциальных систем (что, напр., система, связанная с Землей, неравноправна системе, связанной с частицей) основаны на непонимании абстракции. Инерциальные системы равноправны не как конкретные физич. системы, но в смысле проявления относительно них общих физич. законов. Система отсчета трактуется иногда как "т. зр. наблюдателя", связанные с ней системы координат объявляются только способом описания явлений, они якобы "фиктивны и не имеют отношения к реальному строению мира". Соответственно, принцип относительности трактуется как зависимость законов от способа описания. Все это неверно. Координация в пространстве и времени по отношению к системе отсчета осуществляется объективно, т.е. отвечает строению мира. Способы же описания и "точки зрения" лишь постольку имеют смысл, поскольку отвечают объективной действительности. Независимость законов от способа описания есть тривиальность, т.к. не может зависеть от описания. Принцип же относительности есть физич. закон и, кстати, он верен лишь приближенно, как показала ОТО.

Более глубокими являются след. возражения и толкования.

1. Т.н. релятивистские эффекты – относительность длительности, расстояния, массы и т.п. – подвергались ошибочным толкованиям. Напр., говорят, что движущийся стержень сокращается, и даже ставился об исследовании молекулярных сил, вызывающих такое сокращение. Однако лоренцово сокращение состоит в другом. В системе S, по отношению к к-рой стержень движется, отмечается одновременное (относительно S) положение его концов. Расстояние между ними (измеренное в S) оказывается меньше длины стержня (определяемой обычным путем в системе, в к-рой стержень неподвижен). Стало быть, стержень вовсе не сокращается, с ним самим вообще ничего не происходит. Только его к системе S отлично от отношения к системе S´, в к-рой он неподвижен. Присущие стержню св-ва, в частности длина, проявляются в S иначе, чем в S´, в др. системе S´´ они проявляются еще иначе, и т.д. Говорить о силах, вызывающих лоренцово сокращение, то же, что говорить о силах, удлиняющих тень к вечеру. То же можно сказать и об относительности массы. Таков смысл "относительности". Предметам и процессам присущи определ. св-ва, к-рые различно проявляются в разных отношениях. Такое зависит не только от самого предмета или процесса, но и от той системы, по отношению к к-рой эти св-ва проявляются. Но как св-ва объективны, так и проявления их в разных отношениях столь же объективны. Метафизич. св-в и отношений, абсолютного и относительного ошибочно, как ошибочно смешивать относительное с субъективным, относительность - с точкой зрения наблюдателя. О. т., обнаружив относительность величин, считавшихся до того безотносительными, присущими самому предмету, открыла вместе с тем более сложные св-ва предметов, проявлениями к-рых оказываются эти величины.

2. В исходных положениях частной О. т. пользуются координатами х, у, z и временем t в инерциальной системе отсчета. Но эти понятия требуют определения. Соответственно Эйнштейн дал одновременности пространственно разделенных событий посредством световых сигналов. На той же основе можно дать определение координат х, у, z и времени t. Утверждалось, что определения их условны и необъективны. Это неверно, т.к. испускание и электромагнитных колебаний (сигналов) происходит в природе без всяких наблюдателей и условных соглашений, устанавливая объективную взаимную координацию явлений. Закон постоянства скорости света есть вместе с тем закон этой координации, так что указ. определение х, у, z, t и этот закон есть два выражения одного и того же объективного универс. факта. Др. определения координат и времени, напр. откладыванием масштабов и часами, сверяются с этим. Представление же об условности таких определений основано на поверхностном взгляде на основы О. т. и противопоставлении определений физич. понятий, как якобы условных,– законам. Но определение понятия имеет смысл лишь постольку, поскольку ему соответствует нечто в действительности. А утверждение о существовании этого "нечто" выражает соответствующий , так что реальные определения и законы всегда взаимосвязаны. Остающаяся же степень условности не больше, чем условный единиц измерения.

3. Зачастую сущность О. т. видят не столько в представлениях о структуре пространства-времени, сколько в отнесении явлений к системам отсчета; гл. отличие общей О. т. от частной усматривают в том, что в ней допускаются любые системы отсчета и что все они равноправны, т.е. выполняется т.н. "общий принцип относительности". Утверждают, в частности, равноправность систем Коперника и Птолемея. Этот общий принцип относительности отождествляется с "принципом общей ковариантности", состоящим в требовании, чтобы общие законы выражались в форме, верной для любых пространств.-врем. координат. Эти взгляды ошибочны. Общая О. т. отличается от частной не общностью "допускаемых" координат, а представлениями о структуре (метрике) пространства-времени. Всякая теория "допускает" любые координаты (стоит лишь подставить вместо координат, в к-рых первоначально написаны уравнения теории, произвольные функции других возможных координат). При этом уравнения будут содержать величины, характеризующие ту или иную координатную систему (в О.т. – это составляющие gik метрич. тензора), и будут соответственно преобразовываться при переходе от одной системы к другой. Отсюда название "ковариантность" – сопреобразуемость. Т.о., ковариантность есть всегда выполнимое математич. требование, к-рое применимо и в общей, и в частной О. т., и в классич. теории. Принцип же относительности математически сводится к тому, что в системах отсчета, к к-рым он относится, уравнения не содержат величин, различающих эти системы, т.е. уравнения инвариантны, а не просто ковариантны. Так, согласно "частному" принципу относительности, уравнения в инерциальных системах не содержат их скоростей. Но уравнения, напр., во вращающейся системе содержат ее угловую скорость, т.е. законы физич. явлений в системах, вращающихся с разными скоростями, различны, что обнаруживается на опыте. Поэтому утверждение о равноправности системы Коперника (невращающейся) и Птолемея (вращающейся) неверно независимо от какой бы то ни было теории, т.к. противоречит опытным фактам. То же, что любые координаты пригодны для описания явлений, есть тривиальность, очевидная и без О. т. Предполагаемая в ОТО сложность структуры пространства-времени приводит к тому, что, вообще говоря, не существует строго равноправных систем отсчета (координат), тогда как в частной О. т. инерциальные системы равноправны.

Математически доказывается, что в пространстве-времени с к.-л. метрикой (псевдоримановой, как в ОТО) вообще невозможно равноправие системы координат более , чем в частной О.т., т.е. в этом смысле (а не в смысле ковариантности) невозможен никакой принцип относительности, более общий, чем частный. Считать все системы координат равноправными можно, если отвлечься от метрики, рассматривая ее не как неотъемлемо присущую пространству-времени, а как физическое поле в нем. В отвлечении от метрики пространство-время оказывается просто четырехмерным (топологич.) многообразием и в нем все координаты действительно равноправны просто потому, что без метрики нет никаких оснований для их неравноправности. В частности, без метрики нельзя определить скорость, ускорение и пр., так что сами понятия ускоренной или неускоренной системы теряют смысл. Метрика при этой т.зр. входит в спец. физич. условия протекания явлений. Но если в двух системах все условия, включая и метрику, одинаковы, то, конечно, явления должны течь одинаково. Т.о., равноправность любых систем – общий принцип относительности – оказывается логич. следствием отвлечения пространства-времени от метрики и совпадает с возможностью одинаково пользоваться любыми координатами, т.е. с "принципом общей ковариантности". Но т.к. это возможно в любой теории, то "общий принцип относительности", отождествленный с "принципом ковариантности", не является специфич. чертой ОТО и как физич. закон не выражает ничего, кроме того, что пространство-время есть четырехмерное многообразие, что одинаково признается и в частной О. т. и в классич. теории. Но в двух последних теориях структура пространства-времени фиксирована и существуют естественно связанные с ней системы отсчета (инерциальные). Поэтому ни отвлекаться от метрики, ни вводить общие координаты в них нет надобности, хотя это и возможно. В ОТО же метрика пространства-времени различна в разных условиях, так что выделить системы координат, преимущественные при любых условиях, невозможно. Поэтому ОТО и формулируется в произвольных координатах, в обще-ковариантной форме, и пространство-время в ней рассматривается без фиксированной метрики. Но это не особый физич. принцип теории, а математич. прием ее формулировки. Смешение этого приема с самим физич. содержанием ОТО связано с использованием координат, из-за чего абсолютное – не зависящее от системы координат – сплетается с относительным – зависящим от нее (так, gik определяют метрику как нечто независимое от координат, но сами зависят от них). Обобщение принципа относительности видят в т.н. принципе эквивалентности, согласно к-рому ускоренная система равноправна системе, покоящейся в соответствующем поле тяготения: силы инерции в первой эквивалентны силам тяготения во второй. Но это верно не для любых систем и имеет смысл лишь с т.зр. классич. теории, в ОТО же, строго говоря, теряет смысл. Поле тяготения, как нечто абсолютное, есть поле "кривизны" пространства-времени; то же, что формально играет роль "сил", зависит от системы координат и по чисто математич. теореме может быть всегда исключено вдоль любой "мировой линии". Т.о., послужив Эйнштейну при обосновании ОТО, принцип эквивалентности как бы растворился в ее осн. положениях. Сплетение абсолютного и относительного обнаруживается еще в вопросе об энергии поля тяготения. Величины, характеризующие ее плотность, всегда можно обратить в нуль в данной точке при подходящем выборе координат, т.е. это не есть абс. физич. величины. В связи с этим возникают трудности в формулировке закона сохранения энергии, дискуссии энергии поля и излучения гравитац. волн. Заранее отделить абсолютное (прежде всего саму по себе структуру пространства-времени) от относительного можно при соответствующей математич. формулировке теории, но пока это не осуществлено в полном объеме. При всех условиях только ясное того, что суть О. т. состоит в представлении о структуре пространства-времени, а не в выборе тех или иных координат, позволяет верно понять ее.

О. т. и ф и л о с о ф и я. О. т. преобразовала представления о мироздании и внесла существенно новое в понимание таких категорий, как пространство, время, движение, энергия и др. Возникновение и развитие О. т. неразрывно связано с рядом гносеологич. проблем: определение осн. физич. понятий, относительное и абсолютное и др. В связи с последним на понимание О.т. оказала заметное влияние субъективно-идеалистич. , т.к. физики не владели материалистич. диалектикой. Сам Эйнштейн, руководствуясь в основном материалистич. методологией, не избежал этого влияния. В результате вместе с критикой старых понятий появились и укоренились указ. неверные толкования осн. понятий О.т., недооценка выявленного Минковским содержания О.т. как теории абс. пространства-времени. Представители метафизич. материализма (хотя нек-рые из них и выступали якобы от лица марксистской философии) тоже не могли дать верного толкования О.т. и, критикуя , нападали на самую О.т. Верное понимание О.т. с позиций диалектич. материализма было развито сов. учеными, особенно В. А. Фоком, давшим первое систематич. изложение О.т. с этих позиций.

Важнейшими филос. выводами из О.т. являются: 1) подтверждение и развитие учения диалектич. материализма о пространстве и времени как формах существования материи; 2) соединение пространства и времени в единую форму существования материи – пространство-время, так что самая формула: "Пространство и время суть формы существования материи" должна быть заменена новой – пространство-время есть существования материи, в к-рой пространство и время суть ее относит, стороны; 3) установление единства пространств.-врем. и причинно-следств. структуры мира; 4) открытие (в ОТО) конкретной зависимости структуры пространства-времени от распределения и движения материи; 5) установив неразрывную связь массы и энергии, взаимную обусловленность структуры пространства-времени – поля тяготения и движения тел в этом поле, О. т. углубляет представление о неразрывности материи, ее движения и форм существования (так, масса – " косности материи" – оказывается вместе с тем мерой энергии, мерой "активности материи", мерой наличного или возможного ее движения); 6) открыв относительность разнообразных характеристик тел и явлений как проявление более общих безотносит: св-в, О.т. раскрывает объективную диалектику абсолютного и относительного, св-в и отношений; 7) ОТО открыла новые возможности для научно обоснованных суждений о строении и развитии Вселенной; 8) и критич. пересмотр ряда осн. понятий физики, неразрывно связанный с возникновением и развитием О.т., вносит существ. вклад в методологию науки и теорию познания. В создании О.т. Эйнштейн руководствовался, в частности, следующим филос. принципом: всякое понятие имеет смысл лишь постольку, поскольку оно отражает нечто , доступное, хотя бы в принципе, эксперименту. На этой основе было пересмотрено понятие одновременности, отвергнуты ньютоновские абс. пространство и время. Данные Эйнштейном формулировки этого принципа недостаточно подчеркивают его материалистич. содержание, и это создало почву для его толкования в духе чистого операционализма, хотя в сущности речь идет о материалистич. положении (ср. "Тезисы о Фейербахе" Маркса). О.т. в наст. время прочно установлена и пока нет достаточных оснований для новой, более глубокой теории пространства-времени, хотя попытки наметить такую теорию в связи с квантовой физикой делались и делаются.

А. Александров. Новосибирск.

Современные проблемы О. т. Если в отношении смысла и содержания спец. О. т. выработалась довольно определ. т. зр., разделяемая значит. большинством ученых, то ОТО продолжает интенсивно развиваться, и до сих пор существует мнений почти по всем ее осн. вопросам. Среди этих вопросов центр. место в наст. время занимает проблема энергии гравитац. поля. Согласно ОТО, поле тяготения проявляется в искривлении и только в искривлении пространства-времени. Величины, описывающие энергию и гравитац. поля, не имеют в осн. уравнении ОТО тензорного характера; это положение истолковывается как локализации гравитац. поля, в связи с чем возникает философски важная проблема природы гравитац. поля – представляет оно собой материи или тождественно с пространств.-врем, характеристиками материи, не обладая субстанциональностью. Несмотря на большое предложенных вариантов локализации поля гравитации, проблема энергии еще не может считаться решенной.

С проблемой энергии тесно связана проблема гравитац. волн: большинство ученых исходит из признания реальности гравитац. излучения, несущего энергию, но нек-рые указывают на принципиальные трудности, связанные с нелокализуемостью энергии поля тяготения.

Поскольку гравитац. излучение может быть порождено или уничтожено простым преобразованием системы координат, его нельзя считать, по их мнению, реальным (Л. Инфельд). Ряд исследователей пытается решить задачу в нек-рых спец. координатах, но подавляющее большинство ученых считает, что привилегированных систем координат в ОТО ввести нельзя без нарушения общего принципа относительности. Исключение в этом отношении представляет В. А. Фока, к-рый, подвергнув пересмотру осн. принципы ОТО в том виде, как они были сформулированы Эйнштейном, защищает привилегированный гармонич. координат (см. "Теория пространства, времени и тяготения", 1961, с. 468–76).

Существует ряд попыток разрешить трудности, связанные с нелокализуемостью поля тяготения, путем видоизменения математич. аппарата теории. Нек-рые авторы вводят в рассмотрение наряду с искривленным римановым пространством плоское пространство Минковского (см. П. И. Пугачев, Использование плоского пространства в теории гравитац. поля, в журн.: "Изв. ВУЗов. Физика", 1959, No 6, с. 152). Одна из наиболее удачных попыток в этом направлении была осуществлена Ю. А. Рыловым, к-рый сумел, не нарушая принципа эквивалентности, перейти от описания поля тяготения в римановом пространстве к его описанию в плоском пространстве, касающемся риманова пространства в нек-рой опорной точке (см. "Об относит. локализации гравитац. поля", в журн.: "Вестник МГУ", сер. 3, 1962, No 5, с. 70, и его же, "Нормальные координаты и общий принцип относительности" – там же, 1963, No 3, с. 55).

Широкой распространенностью пользуется т.н. тетрадная формулировка ОТО, к-рая отличается от обычной (метрической) тем, что осн. средством описания гравитац. поля в ней служат не 10 метрич. тензора gμν , а 16 компонент поля тетрад (тетрада представляет собой совокупность четырех ортогональных друг другу единичных векторов, заданных в каждой точке риманова пространства). Наличие дополнительных 6 степеней свободы по сравнению с метрич. формулировкой позволяет надеяться, что трудности с нелокализуемостью энергии гравитац. поля могут быть в ней преодолены (см. С. Pellegrini, J. Plebański, Tetrad fields and gravitational fields, Kbh., 1963).

Все эти подходы, связанные с модификацией математич. аппарата ОТО, ставят исключительно важную методологич. проблему исследования зависимости физич. содержания теории от конкретного вида ее математич. аппарата.

Ряд проблем связан с попытками распространения идей ОТО на изучение др. видов полей, а не только гравитационного. Среди них в первую очередь должны быть отмечены т.н. единые теории, связанные с попытками истолкования электромагнитного и других полей в геометризованном духе (см. М. А. Тоннела, Основы электромагнетизма и теории относительности, М., 1962, с. 368; П. Г. Бергман, Введение в теорию относительности, М., 1947, с. 325). Одна из последних попыток в этом направлении принадлежит Дж. Уилеру. Его "геометродинамика" вводит "геонную" для массы, построенную из полей, имеющих нулевую массу покоя, и дает чисто геометрич. модель для электричества в рамках топологии многосвязного пространства (см. Дж. Уилер, Гравитация, нейтрино и Вселенная, пер. с англ., М., 1962). Многочисл. проблемы связаны с попытками квантования гравитац. поля, приводящими к существованию гравитонов – частиц со спином 2, являющихся переносчиками гравитац. взаимодействия.

Значит. часть работ посвящена применению идей ОТО в космологии и астрофизике (см. . Б. Зельдович и И. Д. Новиков, Релятивистская астрофизика в журн.: "Успехи физ. наук",1964, т. 84, с. 377; 1965, т. 86, с. 447), в частности попыткам связать космологич. характеристики с характеристиками микромира.

Лит.: Эддингтон Α., Теория относительности, пер. с англ., Л.–М., 1934; Лоренц Г. А. [и др.], Принцип относительности. Сборник работ классиков релятивизма, [М.–Л.], 1935; Паули В., Теория относительности, пер. с нем., М.–Л., 1947; Мандельштам Л. И., Лекции по физич. основам теории относительности (1933–1934 гг.), Полн. собр. трудов, т. 5, М., 1950; Эйнштейн Α., Сущность теории относительности, пер. с англ., М., 1955; Вавилов С. И., Экспериментальные основания теории относительности, Собр. соч., т. 4, М., 1956; Александров А. Д., Теория относительности как теория абс. пространства-времени, в кн.: Филос. вопросы совр. физики, М., 1959; Зельманов А. Л., К постановке вопроса о бесконечности пространства в общей теории относительности, "ДАН СССР", 1959, т. 124, No 5; Фок В. Α., Теория пространства, времени и тяготения, 2 изд., М., 1961; Петров А. З., Пространства Эйнштейна, М., 1961; Мак-Витти Г. К., Общая теория относительности и , пер. с англ., М., 1961; Новейшие проблемы гравитации. Сб. ст., М., 1961; Вебер Дж., Общая теория относительности и гравитац. волны, пер. с англ., М., 1962; Синг Дж. Л., Общая теория относительности, пер. с англ., М., 1963; Борн М., Эйнштейновская теория относительности, пер. с англ., М., 1964; Эйнштейн Α., Инфельд Л., Эволюция физики, пер. с англ., 3 изд., М., 1965; Поликаров Α., Относительность и кванты, пер. с болг., М., 1966; Robb Α. Α., The absolute relations of time and space, Camb., 1921; Reichenbach Η., The philosophy of space and time, N. Y., ; Grünbaum Α., Philosophical problems of space and time, , 1964.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


  • Большой Энциклопедический словарь Большая советская энциклопедия - физическая теория, рассматривающая пространственно временные свойства физич. процессов. Эти свойства являются общими для всех физич. процессов, поэтому их часто наз. просто свойствами пространства времени. Свойства пространства времени зависят от … Математическая энциклопедия
  • Эйнштейна, физ. теория, рассматривающая пространственно временные свойства физ. процессов. Т. к. закономерности, устанавливаемые О. т., общие для всех физ. процессов, то обычно о них говорят просто как о свойствах пространства времени (п. в.).… … Естествознание. Энциклопедический словарь

    Физ. теория пространства и времени (специальная О. т.), также тяготения (общая О. т.). Специальная О. т. осн. на двух постулатах Эйнштейна: 1) в любых инерциальных системах отсчёта (ИСО) все физ. явления (механич., электромагнитвые и др.)… … Большой энциклопедический политехнический словарь, А.С. Эддингтон. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Книга «Теория относительности и ее влияние на научную мысль» А. С. Эддингтона [Эддингтон А. С.]…


Теория относительности тесно связана с философией. Прежде всего следует отметить, что основой ее создания стал глубокий философский анализ А. Эйнштейном понятий пространства и времени.

Кроме того, просмотр теорией относительности пространственно-временных представлений, господствовавших в классической физике, влияние на развитие философской мысли.

Одной из центральных философских проблем специальной теории относительности является исследование основ релятивистских эффектов, таких как лоренцивське сокращения длин, замедление времени, относительность одновременности. Дискуссия по этим вопросам способствовала развитию теории относительности. С философской точки зрения наиболее интересным является вопрос об объективной природе относительности. Ньютоновская механика придерживалась представления об инвариантности пространства и времени. С ее точки зрения длины отрезков или твердых стержней и временные интервалы не изменяются при переходе от одной инерциальной системы к другой, например от такой, что находится в состоянии покоя, к такой, что движется. Математическая инвариантность получается как следствие преобразований Галилея, в отношении которых инвариантными являются сами законы классической механики. Однако было установлено, что преобразования Галилея не универсальны. Во-первых, их не удовлетворяли уравнения Максвелла, которые оказались неинвариантны относительно них. Во-вторых, выводы, вытекающие из преобразований Лоренца, противоречили результатам опыта Майкельсона. Этот опыт свидетельствовал, что классический закон сложения скоростей, связан с преобразованиями Галилея, не выполняется, а именно: скорость света не зависит от движения источника.

Противоречие, существовавшее между принципом относительности Галилея, с одной стороны, электродинамике Максвелла и опытом Майкельсона, с другой, преодолел Эйнштейн. Он обобщил принцип относительности, соединив две, казалось бы, взаимоисключающие идеи - идею инвариантности физических законов и принцип постоянства скорости света. Новый принцип относительности утверждал, что физические законы являются инвариантными, но не относительно преобразований Галилея, а относительно преобразований Лоренца. С преобразований Лоренца непосредственно вытекала инвариантность длины и временных интервалов, а именно: длины стержней и временные интервалы должны иметь разные значения при переходе от одной инерциальной системы к другой.

Сам по себе факт вывода из преобразований Лоренца релятивистских кинематических эффектов - неинвариантности пространства и времени - еще не раскрывает их сути. Этот вывод является чисто математическим способом, который не дает ответа на вопрос о содержании релятивистской кинематики.

Исторически первой интерпретацией неинвариантности пространства и времени была трактовка, предложенная Лоренцом. Вывод о сокращении длин стержней, движущихся было сделано им для согласования теории с отрицательным результатом опыта Майкельсона по определению скорости света относительно эфира.

Лоренцивське трактовка сокращение оказалось неудовлетворительным. Его недостаток заключался в том, что оно опиралось на понятие эфира, которое было внутренне противоречивым. По Лоренцом, эфир определялся как привилегированная система отсчета, относительно которой сокращаются длины стержней, движущихся.

Теория относительности с самого начала исключает понятие эфира. Для нее эфир как особая система отсчета не существует вследствие принципа относительности. Релятивистские эффекты - сокращение длин стержней и замедление времени - является следствием самой структуры пространства и времени. Характерной особенностью релятивистского трактовка сокращения длин и замедления времени, что отличает ее от лоренцивськои, является рассмотрение этих эффектов как обратных. Большой интерес для понимания объективной сути относительности пространства составляет введена А. Эйнштейном различие между геометрической и кинематической формами тела. Если тело находится в состоянии покоя, обе эти формы идентичны, а когда оно начинает двигаться, эти формы расщепляются. В собственной системе отсчета тело характеризуется конфигурацией точек, составляющих его геометрическую форму. В системах отсчета, относительно которых тело движется, оно имеет кинематическую форму. К тому же обе эти формы объективно присущие предмету и ни одна из них не является «более реальной».

Интерпретация теории относительности с помощью подвижных систем отсчета с установленными в них измерительными приборами не является единственной. Г. Минковский показал, что теория относительности предполагает чисто геометрическое построение. Ее положение реализуется в четырехмерном псевдоевклидовому пространстве, три измерения которого имеют пространственный характер в обычном понимании этого слова, а один соответствует времени. В пространстве Минковского действует группа преобразований Лоренца.

Особенность геометрического изображения теории относительности состоит в том, что на первый план выдвигается не относительность, а абсолютность в пространственно-временных отношениях. Однако абсолютное здесь не оторвано от относительного, а связанное с ним. Абсолютный интервал выражается через пространственную и временную составляющие, являются относительными.

Геометрическая интерпретация теории относительности немало бесспорных позитивных моментов. Все релятивистские эффекты здесь получают наглядное обнаружения. С философской точки зрения значение этой интерпретации состоит в том, что она выясняет диалектическая взаимосвязь относительного и абсолютного. Выше уже обращалось внимание на то, что теория относительности Эйнштейна согласуется с материализмом. Следует отметить, что сам геометрический подход к теории относительности еще не означает ее материалистической интерпретации. Для того чтобы получить такую интерпретацию, надо сделать материалистические предположение, выходящие за пределы геометрии и отражают материалистическое решение основного вопроса философии.

Специальная теория относительности подготовила почву для создания общей теории относительности - эйнштейновской теории тяготения, еще теснее связала свойства пространства и времени с материей.

Теория относительности сыграла важную роль в развитии теоретической физики. Следует отметить, что наличие огромных запасов энергии в ядре атома была доказана именно на основе открытого А. Эйнштейном взаимосвязи массы и энергии, что стимулировало экспериментальные и теоретические открытия в области физики атомного ядра. Последовательное применение идей теории относительности в различных сферах физики выдвинуло ряд новых важных, еще не решенных проблем. Исследование их способствует прогрессу науки, углубляет наши знания о свойствах и закономерностях реального мира. Познавательное значение теории относительности бесспорно. Касаясь важнейших проблем пространства, времени и движения, энергии и массы, теория относительности играет значительную роль в формировании научного, материалистического мировоззрения, а также правильного научного представления о свойствах и закономерностях окружающего мира.

Иногда возникают противоречивые рассуждения относительно понимания тех или иных выводов теории относительности, связанные с наличием противоречий между ее названием и содержанием. Название «теория относительности * бы свидетельствует, что содержанием теории является« относительность ». Относительность же, положенную в основу, не всегда отличают от релятивизма, т.е. учение об относительности наших знаний, относительность в смысле субъективизма. Такое понимание физической теории импонирует позитивистам и философским идеалистам. Они видят в теории относительности пример физической теории, что противоречит материализма. Отсюда делается обобщающий вывод о том, что современная физика несовместима с диалектическим материализмом. В связи с этим некоторые физики вводят понятие «физическая относительность», которая отличается от релятивизма. Они изымают из теории субъект, заменяя его измерительным прибором, не замечая при этом, что любой измерительный прибор только вместе с субъектом приобретает черты, которые принципиально отличаются от всех других исследуемых объектов материального мира. Эти недоразумения отпадают, если теории относительности подойти как к физической теории с ее определенным конкретным содержанием. Содержанием теории относительности является физическая теория пространства и времени, которая учитывает существующую между ними взаимосвязь геометрического характера. При этом оказывается, что «относительность» носит подчиненный характер, иногда даже сугубо иллюстративный.

Теория относительности, как и любая физическая теория, правильно отражает объективные закономерности природы и глубоко материалистической. Теория относительности исходит из того, что физика изучает конкретные свойства материи, которая объективно существует вне нашего сознания и независимо от нас. Основные положения теории относительности ярко отражают диалектический характер закономерностей реального мира, диалектику природы.

Р Е Ф Е Р А Т


Философские аспекты теории относительности

Эйнштейна


Горинов Д.А.


Пермь 1998г.

Введение.


В конце XIX начале XX веков был сделан ряд крупнейших открытий, с которых началась революция в физике. Она привела к пересмотру практически всех классических теорий в физике. Возможно, одной из самых крупных по значимости и сыгравших наиболее важную роль в становлении современной физики наряду с квантовой теорией была теория относительности А.Эйнштейна.

Создание теории относительности позволило пересмотреть традиционные взгляды и представления о материальном мире. Такой пересмотр существовавших взглядов был необходим, так как в физике накопилось много проблем, которые не могли быть решены с помощью существовавших теорий.

Одной из таких проблем был вопрос о предельности скорости распространения света, которая с точки зрения господствовавшего тогда принципа относительности Галилея, основывавшегося на преобразованиях Галилея, исключалась. Наряду с этим существовало множество экспериментальных фактов в пользу представлений о постоянстве и предельности скорости света (универсальной постоянной). Примером здесь может служить осуществленный в 1887 г. опыт Майкельсона и Морли показавший, что скорость света в вакууме не зависит от движения источников света и одинакова во всех инерциальных системах отсчета. А также наблюдения датского астронома Оле Ремера, определившего еще в 1675г. по запаздыванию затмений спутников Юпитера конечную величину скорости света.

Другая значимая проблема, возникшая в физике, была связана с представлениями о пространстве и времени. Существовавшие в физике представления о них основывались на законах классической механики, поскольку в физике господствовал взгляд, согласно которому всякое явление имеет, в конечном счете, механистическую природу, так как принцип относительности Галилея представлялся всеобщим, относящимся к любым законам, а не только к законам механики. Из принципа Галилея, основывавшегося на преобразованиях Галилея, следовало, что пространство не зависит от времени и наоборот время от пространства.

Пространство и время мыслились как заданные и независимые друг от друга формы, в них укладывались все делавшиеся в физике открытия. Но такое соответствие положений физики концепции пространства и времени существовало лишь до тех пор, пока не были сформулированы законы электродинамики, выраженные в уравнениях Максвелла, так как выяснилось, что уравнения Максвелла не инвариантны относительно преобразований Галилея.

Незадолго до создания теории относительности, Лоренцем были найдены преобразования, при которых уравнения Максвелла оставались инвариантными. В этих преобразованиях, в отличие от преобразований Галилея, время в различных системах отсчета не было одинаковым, но самым главным было то, что из этих преобразований уже не следовало, что пространство и время независимы друг от друга, так как при преобразовании координат участвовало время, а при преобразовании времени - координаты. И как следствие этого встал вопрос - как поступить? Существовало два решения, первое - считать, что электродинамика Максвелла ошибочна, или второе - предположить, что классическая механика с ее преобразованиями и принципом относительности Галилея является приближенной и не может описать всех физических явлений.

Таким образом, на этом этапе в физике проявились противоречия между классическим принципом относительности и положением об универсальной постоянной, а также между классической механикой и электродинамикой. Было много попыток дать другие формулировки законам электродинамики, но они не увенчались успехом. Все это сыграло роль предпосылок к созданию теории относительности.

Работы Эйнштейна наряду с громадным значением в физике имеют, также, большое философское значение. Очевидность этого следует из того, что теория относительности связана с такими понятиями как материя, пространство, время и движение, а они являются одними из фундаментальных философских понятий. Диалектический материализм нашел аргументацию своим представлениям о пространстве и времени в теории Эйнштейна. В диалектическом материализме дается общее определение пространства и времени как форм бытия материи, а следовательно, они неразрывно связаны с материей, неотрывны от нее. «С позиций научного материализма, который основывается на данных частных наук, пространство и время - не самостоятельные независимые от материи реальности, а внутренние формы ее бытия» 1 . Такую неразрывную связь пространства и времени с движущейся материей с успехом показала теория относительности Эйнштейна.

Были также попытки использовать теорию относительности идеалистами в качестве доказательства своей правоты. Так, например, американский физик и философ Ф. Франк говорил, что физика ХХ века, особенно теория относительности и квантовая механика остановили движение философской мысли к материализму, основанное на господстве механической картины мира в прошлом веке. Франк говорил, что «в теории относительности, закон сохранения материи больше не имеет силы; материя может превращаться в нематериальные сущности, в энергию» 2 .

Однако все идеалистические трактовки теории относительности основываются на искаженных выводах. Примером этому может служить то, что иногда идеалисты подменяют философское содержание понятий "абсолютное" и "относительное" физическим. Они утверждают, что поскольку координаты частицы и ее скорость всегда останутся сугубо относительными величинами (в физическом смысле), т. е. они никогда не превратятся даже приближенно в абсолютные величины и поэтому, якобы, никогда не смогут отражать абсолютную истину (в философском смысле). В действительности же координаты и скорость, не смотря на то, что не обладают абсолютным характером (в физическом смысле), являются приближением к абсолютной истине. 1

Теория относительности устанавливает относительный характер пространства и времени (в физическом смысле), а идеалисты толкуют это как отрицание ею объективного характера пространства и времени. Относительный характер одновременности и последовательности двух событий вытекающий из относительности времени, идеалисты пытаются использовать для отрицания необходимого характера причинной связи. В диалектико-материалистическом понимании и классические представления о пространстве и времени и представления о теории относительности есть относительные истины, включающие в себя лишь элементы абсолютной истины.


До середины XIX века понятие материи в физике было тождественно понятию вещества. До этого времени физика знала материю только как вещество, которое могло иметь три состояния. Такое представление о материи имело место из-за того, что «объектами изучения классической физики являлись лишь движущиеся материальные тела в виде вещества, кроме вещества естествознание не знало других видов и состояний материи (электромагнитные процессы относили или к вещественной материи, или к ее свойствам)» 1 . По этой причине механические свойства вещества были признаны универсальными свойствами мира в целом. Об этом упоминал в своих работах Эйнштейн, писав, что «для физика начала девятнадцатого столетия, реальность нашего внешнего мира состояла из частиц, между которыми действуют простые силы, зависящие только от расстояния» 2 .

Представления о материи начали меняться лишь с появлением нового понятия, введенного английским физиком М. Фарадеем - поля. Фарадей, открыв в 1831 г. электромагнитную индукцию и обнаружив связь между электричеством и магнетизмом, стал основоположником учения об электромагнитном поле и тем самым дал толчок к эволюции представлений об электромагнитных явлениях, а значит и к эволюции понятия материи. Фарадей впервые ввел такие понятия как электрическое и магнитное поле, высказал идею существования электромагнитных волн и тем самым открыл новую страницу в физике. В дальнейшем Максвелл дополнил и развил идеи Фарадея в результате чего и появилась теория электромагнитного поля.

Определенное время ошибочность отождествления материи с веществом не давала о себе знать, по крайней мере, явно, хотя вещество не охватывало собой всех известных объектов природы, не говоря уже об общественных явлениях. Однако принципиальное значение имело то, что материю, находящуюся в форме поля, было невозможно объяснить с помощью механических образов и представлений, и что эта область природы, к которой относятся электромагнитные поля, все больше начинала проявлять себя.

Открытие электрического и магнитного полей стало одним из фундаментальных открытий физики. Оно сильно повлияло на дальнейшее развитие науки, а также на философские представления о мире. Некоторое время электромагнитные поля не могли научно обосновать, построить вокруг них одну стройную теорию. Учеными было выдвинуто множество гипотез в попытке объяснить природу электромагнитных полей. Так Б. Франклин объяснял электрические явления наличием особой материальной субстанции состоящей из очень мелких частиц. Эйлер пытался объяснить электромагнитные явления посредством эфира, он говорил, что свет по отношению к эфиру то же самое, что звук по отношению к воздуху. В этот период стала популярна корпускулярная теория света, согласно которой световые явления объяснялись испусканием частиц светящимися телами. Были попытки объяснить электрические и магнитные явления существованием неких материальных субстанций соответствующих этим явлениям. «Их относили к различным субстанциальным сферам. Даже в начале XIX в. магнитные и электрические процессы объяснялись наличием соответственно магнитной и электрической жидкостей». 1

Явления связанные с электричеством магнетизмом и светом были известны давно и ученые, изучая их, пытались объяснить эти явления по раздельности, но с 1820г. такой подход стал невозможен, так как нельзя было игнорировать работы, проведенные Ампером и Эрстедом. В 1820г. Эрстедом и Ампером были сделаны открытия, в результате чего стала явной связь между электричеством и магнетизмом. Ампер обнаружил то, что если через проводник расположенный рядом с магнитом пропустить ток то на этот проводник начинают действовать силы со стороны поля магнита. Эрстед наблюдал другой эффект: влияние электрического тока протекающего по проводнику на магнитную стрелку, находящуюся рядом с проводником. Из этого можно было сделать вывод, что изменение электрического поля сопровождается возникновением магнитного поля. Эйнштейн отмечал особое значение сделанным открытиям: «Изменение электрического поля, произведенное движением заряда, всегда сопровождается магнитным полем - заключение основано на опыте Эрстеда, но оно содержит нечто большее. Оно содержит признание того, что связь электрического поля, изменяющегося со временем, с магнитным полем весьма существенна» 1 .

На базе экспериментальных данных, накопленных Эрстедом, Ампером, Фарадеем и другими учеными, Максвелл создал целостную теорию электромагнетизма. Позднее, проведенные им исследования привели к заключению о том, что свет и электромагнитные волны имеет единую природу. Наряду с этим было обнаружено что электрическое и магнитное поле обладает таким свойством, как энергия. Об этом Эйнштейн писал: «Будучи вначале лишь вспомогательной моделью поле становится все более и более реальным. Приписывание полю энергии является дальнейшим шагом в развитии, в котором понятие поля оказывается все более существенным, а субстанциальные концепции, свойственные механистической точке зрения, все более отходят на второй план». 2 Максвелл также показал, что электромагнитное поле будучи один раз созданным, может существовать самостоятельно, независимо от источника. Однако он не выделил поле в отдельную форму материи, которая была бы отлична от вещества.

Дальнейшее развитие теории электромагнетизма рядом ученых, в том числе Г.А. Лоренцем, поколебало привычную картину мира. Так в электронной теории Лоренца в отличие от электродинамики Максвелла заряд, порождающий электромагнитное поле, представлялся уже не формально, роль носителя заряда и источника поля у Лоренца начали играть электроны. Но на пути выяснения связи электромагнитного поля с веществом возникло новое препятствие. Вещество в соответствии с классическими представлениями мыслилось как дискретное материальное образование, а поле представлялось непрерывной средой. Свойства вещества и поля считались несовместимыми. Первым кто перебросил мост через эту пропасть, разделявшую вещество и поле, был М. Планк. Он пришел к выводу, что процессы испускания и поглощения поля веществом происходят дискретно, квантами с энергией E=hn. В результате этого изменилось представления о поле и веществе и привело к тому что было снято препятствие к признанию поля как формы материи. Эйнштейн пошел дальше, он высказал предположение о том, что электромагнитное излучение не только испускается и поглощается порциями, но распространяется дискретно. Он говорил что свободное излучение это поток квантов. Эйнштейн поставил в соответствие кванту света, по аналогии с веществом, импульс - величина которого выражалась через энергию E/c=hn/c (существование импульса было доказано в опытах проведенных русским ученым П. Н. Лебедевым в опытах по измерению давления света на твердые тела и газы). Здесь Эйнштейн показал совместимость свойств вещества и поля, так как левая часть приведенного выше соотношения отражает корпускулярные свойства, а правая - волновые.

Таким образом, подходя к рубежу XIX столетия, было накоплено множество фактов относительно представлений о поле и веществе. Многие ученые стали считать поле и вещество двумя формами существования материи, исходя из этого, а также ряда других соображений, возникла необходимость соединения механики и электродинамики. «Однако так просто присоединить законы электродинамики к законам движения Ньютона и объявить их единой системой, описывающей механические и электромагнитные явления в любой инерциальной системе отсчета, оказалось невозможным». 1 Невозможность такого объединения двух теорий вытекала из того, что эти теории, как уже говорилось ранее, основаны на разных принципах, это выражалось в том, что законы электродинамики в отличие от законов классической механики являются нековариантными относительно преобразований Галилея.

Для того чтобы построить единую систему, в которую бы входила и механика и электродинамика существовало два наиболее очевидных пути. Первый состоял в том, чтобы изменить уравнения Максвелла, то есть законы электродинамики таким образом, чтобы они стали удовлетворять преобразованиям Галилея. Второй путь был связан с классической механикой и требовал ее пересмотра и в частности введения вместо преобразований Галилея других преобразований, которые обеспечили бы ковариантность как законов механики так и законов электродинамики.

Верным оказался второй путь, по которому и пошел Эйнштейн, создав специальную теорию относительности, которая окончательно утвердила новые представления о материи в своих правах.

В дальнейшем знания о материи были дополнены и расширены, более ярко стала выражена интеграция механических и волновых свойств материи. Это можно показать на примере теории, которая была представлена в 1924 г. Луи де Бройлем в ней де Бройль высказал предположение о том, что не только волны обладают корпускулярными свойствами, но и частицы вещества в свою очередь обладают волновыми свойствами. Так де Бройль поставил в соответствие движущейся частице волновую характеристику - длину волны lh/p, где p - импульс частицы. Основываясь на этих идеях, Э. Шредингер создал квантовую механику, где движение частицы описывается с помощью волновых уравнений. И эти теории, показавшие наличие волновых свойств у вещества, были подтверждены экспериментально - так например, было обнаружено при прохождении микрочастиц через кристаллическую решетку можно наблюдать такие явления, как раньше считалось, присущие только свету, это дифракция и интерференция.

А также была разработана теория квантового поля, в основе которого лежит понятие о квантовом поле - особый вид материи, оно находится в состоянии частицы так и в состоянии поля. Элементарная частица в этой теории представляется как возбужденное состояние квантового поля. Поле - это тот же особый вид материи, который характерен и для частиц, но только находящийся в невозбужденном состоянии. На практике было показано, если энергия кванта электромагнитного поля превысит собственную энергию электрона и позитрона которая, как мы знаем из теории относительности, равна mc 2 и если такой квант столкнется с ядром, то в результате взаимодействия электромагнитного кванта и ядра возникнет пара электрон - позитрон. Существует также обратный процесс: при столкновении электрона и позитрона происходит аннигиляция - вместо двух частиц появляются два g-кванта. Такие взаимопревращения поля в вещество и назад вещества в поле указывают на существование тесной связи вещественной и полевой формы материи, что и было взято в основу при создании многих теорий, в том числе и в теории относительности.

Как можно видеть, после опубликования в 1905г. специальной теории относительности было сделано много открытий связанных с частными исследованиями материи, но все эти открытия полагались на то общее представление о материи, которое было впервые дано в работах Эйнштейна в виде целостной и непротиворечивой картины.

Пространство и время


Проблема пространства и времени, как и проблема материи, непосредственно связана с физической наукой и философией. В диалектическом материализме дается общее определение пространства и времени как форм бытия материи. «С позиций научного материализма, который основывается на данных частных наук, пространство и время - не самостоятельные независимые от материи реальности, а внутренние формы ее бытия» 1 , а следовательно, они неразрывно связаны с материей, неотрывны от нее. Такое представление о пространстве и времени имеет место и в современной физике, однако в период господства классической механики было не так - пространство было оторвано от материи, не было связано с ней, не являлось ее свойством. Такое положение пространства относительно материи вытекало из учения Ньютона, он писал, что «абсолютное пространство по самой сущности безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным. Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которые в обыденной жизни принимается за пространство неподвижное... Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным, или относительным». 2

Время представлялось также отдельным от материи и не зависело от каких-либо протекающих явлений. Ньютон разделил время, также как и пространство, на абсолютное и относительное, абсолютное - существовало объективно, это «истинное математическое время, само по себе и самой своей сущности, без всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью». 1 Относительное же время было лишь кажущимся, постигаемым лишь с помощью чувств, субъективным восприятием времени.

Пространство и время считались не зависимыми не только от явлений протекающих в материальном мире, но и друг от друга. Это субстанциальная концепция в этой концепции, как уже говорилось ранее, пространство и время являются самостоятельными по отношению к движущейся материи и не зависят друг от друга, подчиняются лишь собственным закономерностям.

Наряду с субстанциональной концепцией существовала и развивалась другая концепция пространства и времени - реляционная. В основном этой концепции придерживались философы-идеалисты, в материализме такая концепция была скорее исключением, чем правилом. Согласно этой концепции пространство и время не есть что-то самостоятельное, а являются производными от более фундаментальной сущности. Корни реляционной концепции уходят в глубь веков к Платону и Аристотелю. По Платону время было сотворено богом, у Аристотеля эта концепция получила большее развитие. Он колебался между материализмом и идеализмом и поэтому признавал две трактовки времени. Согласно одной из них (идеалистической) время представлялось как результат действия души, другая материалистическая состояла в том, что время представлялось результатом объективного движения, однако основным в его представлениях о времени, было, то что время не являлось самостоятельной субстанцией.

Во время господства в физике представлений о пространстве и времени данных в теории Ньютона в философии превалировала реляционная концепция. Так, Лейбниц на основе своих представлений о материи, более широких, нежели у Ньютона, довольно полно развил ее. Лейбниц представлял материю как духовную субстанцию, однако ценным было то, что в определении материи он не ограничился лишь вещественной ее формой, к материи он относил также и свет, и магнитные явления. Лейбниц отвергал существование пустоты и говорил, что материя существует всюду. Исходя из этого, он отверг ньютоновскую концепцию пространства как абсолютного, а следовательно, отбросил и то, что пространство есть нечто самостоятельное. Согласно Лейбницу было бы невозможным рассматривать пространство и время вне вещей, так как они являлись свойствами материи. «Материя, считал он, играет определяющую роль в пространственно-временной структуре. Однако такое представление Лейбница о времени и пространстве не находило подтверждения в современной ему науке и потому не было принято его современниками». 1

Лейбниц был не единственным, кто противостоял Ньютону, среди материалистов можно выделить Джона Толанда он, также как и Лейбниц, отвергал абсолютизацию пространства и времени, по его мнению, было бы невозможным мыслить пространство и время без материи. Для Толанда не существовало абсолютного пространства отличного от материи которое бы являлось вместилищем материальных тел; нет и абсолютного времени, обособленного от материальных процессов. Пространство и время суть свойства материального мира.

Решающий шаг к развитию материалистического учения о пространстве, основанного на более глубоком понимании свойств материи был сделан Н. И. Лобачевским в 1826г. До этого времени геометрия Евклида считалась верной и незыблемой, в ней говорилось, что пространство может быть только прямолинейным. На евклидову геометрию опирались практически все ученые, так как ее положения прекрасно подтверждались на практике. Исключением не был и Ньютон в создании своей механики.

Лобачевский впервые предпринял попытку подвергнуть сомнению незыблемость учения Евклида, «он разработал первый вариант геометрии криволинейного пространства, в которой через точку на плоскости можно провести более одной прямой параллельной данной, сума углов треугольника меньше 2d и так далее; введя постулат о параллельности прямых, Лобачевский получил внутренне не противоречивую теорию» 1 .

Геометрия Лобачевского была первой из множества разработанных позднее подобных теорий, в качестве примера можно привести сферическую геометрию Римана и геометрию Гаусса. Таким образом, стало ясно, что геометрия Евклида не является абсолютной истиной, и что при определенных обстоятельствах могут существовать другие геометрии отличные от Евклидовой.

«Успехи естественных наук, приведших к открытию материи в состоянии поля, математических знаний, открывших неевклидовы геометрии, а также достижения философского материализма являлись фундаментом, на котором возникло диалектико-материалистическое учение об атрибутах материи. Это учение впитало в себя всю совокупность накопленных естественнонаучных и философских знаний, опираясь на новое представление о материи». 2 В диалектическом материализме категории пространства и времени признаются отражающими внешний мир, они отражают общие свойства и отношения материальных объектов и поэтому имеют общий характер - ни одно материальное образование не мыслимо вне времени и пространства.

Все эти положения диалектического материализма были следствием анализа философских и естественнонаучных знаний. Диалектический материализм соединил в себе все то позитивное знание, накопленное человечеством за все тысячелетия его существования. В философии появилась теория, которая приблизила человека к пониманию окружающего его мира, которая дала ответ на основной вопрос - что есть материя? В физике же до 1905г. такой теории не существовало, имелось множество фактов, догадок, но все выдвигаемые теории содержали лишь осколки истины, многие появлявшиеся теории противоречили друг другу. Такое положение вещей имело место вплоть до опубликования Эйнштейном своих работ.

Бесконечная лестница познания


Создание теории относительности было закономерным результатом переработки накопленных человечеством физических знаний. Теория относительности стала следующей ступенью развития физической науки, включив в себя позитивные моменты предшествующих ей теорий. Так, Эйнштейн в своих работах, отрицая абсолютизм механики Ньютона, не отбросил ее полностью, он отвел ей подобающее место в структуре физического знания, считая, что теоретические выводы механики пригодны лишь для определенного круга явлений. Аналогичным образом обстояло дело и с другими теориями, на которые опирался Эйнштейн, он утверждал преемственность физических теорий, говоря, что «специальная теория относительности представляет собой результат приспособления основ физики к электродинамике Максвелла-Лоренца. Из прежней физики она заимствует предположение о справедливости евклидовой геометрии для законов пространственного расположения абсолютно твердых тел, инерциальную систему и закон инерции. Закон равноценности всех инерциальных систем с точки зрения формулирования законов природы специальная теория относительности принимает справедливым для всей физики (специальный принцип относительности). Из электродинамики Максвелла-Лоренца эта теория заимствует закон постоянства скорости света в вакууме (принцип постоянства скорости света)». 1

Вместе с тем Эйнштейн понимал, что специальная теория относительности (СТО) также не являлась незыблемым монолитом физики. «Можно лишь заключить, - писал Эйнштейн, - что специальная теория относительности не может претендовать на неограниченную применимость; ее результаты применимы лишь до тех пор, пока можно не учитывать влияние гравитационного поля на физические явления (например световые)». 2 СТО была лишь очередным приближением физической теории, действующим в определенных рамках, которыми являлось гравитационное поле. Логическим развитием специальной теории стала общая теория относительности, она разорвала «гравитационные путы» став на голову выше специальной теории. Тем не менее, общая теория относительности не опровергала специальную теорию, как пытались представить оппоненты Эйнштейна, по этому поводу он в своих работах писал: «Для бесконечно малой области координаты всегда можно выбрать таким образом, что гравитационное поле будет отсутствовать в ней. Тогда можно считать, что в такой бесконечно малой области выполняется специальная теория относительности. Тем самым общая теория относительности связывается со специальной теорией относительности, и результаты последней переносятся на первую» 3 .

Теория относительности позволила сделать громадный шаг вперед в описании окружающего нас мира, объединив бывшие обособленными понятия материи, движения, пространства и времени. Она дала ответы на множество вопросов остававшихся неразрешенными в течение веков, сделала ряд предсказаний подтвердившихся впоследствии, одним из таких предсказаний было предположение сделанное Эйнштейном об искривлении траектории светового луча вблизи Солнца. Но вместе с этим перед учеными возникли новые проблемы. Что стоит за явлением сингулярности, что происходит со звездами-гигантами, когда они «умирают», что есть на самом деле гравитационный коллапс, как зарождалась вселенная - решить эти и многие другие вопросы станет возможным, лишь поднявшись еще на одну ступень вверх по бесконечной лестнице познания.

Орлов В.В. Основы философии (часть первая)

2 Франк Ф. Философия науки, М., 1960г., с. 281

1 Готт В.С. Философские вопросы современной физики, М., 1967г., с.32

1 Грибанов Д. П. Философские основания теории относительности М., 1982г., с. 116

2 Эйнштейн А. Собрание научных трудов, М., 1967, т. 4, с. 542

Грибанов Д. П. Философские основания теории относительности М., 1982г., с. 120

Эйнштейн А. Собрание научных трудов, М., 1967, т. 4, с. 442

2 Эйнштейн А. Собрание научных трудов, М., 1967, т. 4, с. 445

1 В.И Родичев Аспекты единой теории относительности // Эйнштейн и философские проблемы физики ХХ века, М.1979, стр. 421

1 Орлов В.В. Основы философии (часть первая)

2 Ньютон И. Математические начала натурфилософии.

1 Ньютон И. Математические начала натурфилософии.


Д. П. Грибанов Философские основания теории относительности М.1982, с.143

1 В.В. Орлов Основы Философии, часть первая, с. 173

2 Грибанов Д.П. Философские основания теории относительности. М. 1982г., с.147

Теории личности, претендующей на фундаментальность (например, фрейдистской или бихейвиористской) в значительной степени субъективна. Вообще, с точки зрения уже рассматриваемой здесь типологии физических теорий, любая теория гуманитарного знания будет иметь феноменологический характер, так как будет являться в значительной степени описательной. Однако существующее в психологии феноменологическое...

Действие и противодействие, деятельность, деяние. Вспомним гетевское: "В Деянии начало бытия!" Именно универсальные отношения кристаллизуются в содержании философских категорий, а система, "ансамбль" этих категорий есть учение о Бытии-Материи-Субстанции. Впрочем, категория "материя", доведенная до понимания ее как субстанции, уже как бы и не материя, а скорее - Матерь (или Отец, кому как больше...

физическая теория, основной смысл которой состоит в утверждении: в физическом мире все происходит благодаря структуре пространства и изменению его кривизны. Различают частную и общую теорию относительности.

В основе частной теории, сформулированной А. Эйнштейном в 1905 г., лежат два постулата: 1. Все законы физики имеют один и тот же вид во всех инерциональных системах отчета. 2. Во всех физических системах скорость света постоянна.

Развивая эту теорию, в 1918 г. Г. К4инковский показал, что свойства нашей Вселенной следует описывать вектором в четырехмерном пространстве-времени. В 1916 г. Эйнштейн сделал следующий шаг и опубликовал общую теорию относительности (ОТО) - фактически теорию гравитации. Причиной тяготения, согласно этой теории, является искривление пространства вблизи массивных тел. В качестве математического аппарата в ОТО использован тензорный анализ и общая риманова геометрия.

Из теории относительности следует ряд важных следствий. Во-первых, закон эквивалентности массы и энергии. Во-вторых, отказ от гипотез о мировом эфире и абсолютных пространстве и времени. В-третьих, эквивалентность гравитационной и инерционной масс. Теория относительности нашла многочисленные экспериментальные подтверждения и используется в космологии, физике элементарных частиц, ядерной технике и др.

Отличное определение

Неполное определение ↓

спец. (СТО) и общая (ОТО) теории относительности разработаны А.Эйнштейном соответственно в 1905 и 1916 гг. В основе ОТО лежат два постулата (принципа): 1) Принцип относительности Эйнштейна (все физ. процессы в инерциальных системах протекают совершенно одинаково); 2) Принцип постоянства скорости света (скорость света во всех инерциальных системах одинакова по всем направлениям и не зависит от движения источника и приемника света. Скорость света в вакууме - максимальная скорость, существующая в природе). Из этих постулатов вытекает ряд следствий: масса тела растет с ростом скорости его движения; время в разных системах течет по-разному; время и пространство взаимосвязаны и образуют четырехмерный мир (его свойства не зависят от материи), масса и энергия связаны формулой E = mc2, новая формула сложения скоростей (вместо формулы Галилея) и др. В ОТО принцип относительности был распространен на все системы. Это следовало из эквивалентности инерционной и гравитационной масс, а ОТО стала общей теорией тяготения. Принцип же постоянства скорости света был ограничен областями, где гравитационными силами можно пренебречь. Из ОТО следовал ряд выводов: 1) Свойства пространствавремени зависят от движения материи. Материальные тела искривляют пространство-время, создавая тем самым гравитационные поля. 2) Луч света, обладая инерционной, а след-но, и гравитационной массой, должен искривляться в поле тяготения. 3) Частота света в результате действия поля тяготения должна изменяться. СТО и ОТО наряду с квантовой механикой лежат в основе совр. физики. Ф.М.Дягилев

Отличное определение

Неполное определение ↓

физическая теория, в развитии которой необходимо различать 3 этапа. 1) Принцип относительности классической механики (Галилей, Ньютон) гласит: во всех равномерно и прямолинейно движущихся системах механические процессы протекают точно так же, как и в покоящихся. Следовательно, прямолинейное равномерное движение соответствующей системы не может быть определено, установлено без помощи тел, находящихся вне системы. Так, напр., если в прямолинейно и равномерно движущемся железнодорожном вагоне подбросить вертикально вверх мяч, то он снова упадет вниз по перпендикуляру, точно так же, как если бы вагон стоял. Напротив, наблюдателю, стоящему на железнодорожной насыпи, траектория представляется в виде параболы. Исходя из формы наблюдаемой извне и зафиксированной (сфотографированной) параболы, можно определить скорость движения поезда по отношению к местонахождению наблюдателя. Подобным образом обстоит дело с движением небесных тел во Вселенной. Попытки (Физо в 1849, Майкельсон в 1881, В. Вин и др.) при помощи электромагнитных (оптических) средств создать абсолютную систему отношений в мировом пространстве (нечто сходное с покоящимся "эфиром" как абсолютным, неподвижным пространством - Ньютон) окончились неудачно. 2) В специальной теории относительности Эйнштейна (1905) создано новое для физики понятие времени. Время определяется уже не через вращение Земли, а через распространение света (300 000 км/с). Это время так тесно связано с пространственными измерениями, что вместе они образуют пространство, имеющее четыре измерения. Став координатой, время теряет свой абсолютный характер, становится только "относительной" величиной в системе связей. Было найдено такое понятие пространственного времени, которое соответствует всем физическим фактам. 3) Всеобщая теория относительности (Энштейн, 1916) устанавливает, что сила тяжести и ускорение равноценны, что в соответствии с миром Минковского (1908) трехмерная система координат классической физики дополняется временем как четвертой координатой (см. Континуум). Она расширяет наблюдение, включая рассмотрение равномерно-ускоренных и вращающихся систем, что требует сложного математического аппарата; необходимая для этого геометрия впервые определяется благодаря данной физической теории относительности (см. Метагеометрия). Теория относительности разрешает проблемы, которые возникают из наблюдения за распространением электромагнитных и оптических явлений, специально - за распространением света в движущихся системах. Результаты наблюдений, истолкованных с помощью теории относительности, отклоняются от результатов наблюдений классической механики и электродинамики только там, где речь идет о больших скоростях и огромных расстояниях.

Отличное определение

Неполное определение ↓

физическая теория пространства и времени, сформулированная Эйнштейном в 1905 (специальная теория) и в 1916. (общая теория). Она исходит из т. наз. классического принципа относительности Галилея - Ньютона, согласно к-ро-му механические процессы происходят единообразно в инерциальных системах отсчета, движущихся одна относительно др. прямолинейно и равномерно. Развитие оптики и электродинамики привело к выводу о применимости этого принципа к распространению света, т. е. электромагнитных волн (независимость скорости света от движения системы) и к отказу от понятия абсолютного времени, абсолютной одновременности и абсолютного пространства. Согласно специальной О. т., ход времени зависит от движения системы, и интервалы времени (и пространственные масштабы) изменяются т. обр., что скорость света постоянна в любой системе отсчета, не меняется в зависимости от ее движения. Из этих посылок было выведено большое число физических заключений, к-рые обычно именуются “релятивистскими”, т. е. основанными на О. т. Среди них особое значение приобрел закон взаимосвязи массы и энергии, согласно к-рому масса тела пропорциональна его энергии и к-рый широко используется в совр. ядерной физике. Развивая и обобщая специальную О. т., Эйнштейн пришел к общей О. т., к-рая по своему осн. содержанию является новой теорией тяготения. Она основана на предположении, что четырехмерное пространство-время, в к-ром действуют силы тяготения, подчиняется соотношениям неевклидовой геометрии. На плоскости эти соотношения могут быть наглядно представлены в качестве обычных евклидовых соотношений на поверхностях, обладающих кривизной. Эйнштейн рассматривал отступление геометрических соотношений в четырехмерном пространстве-времени от евклидовых как искривление пространства-времени. Он отождествил такое искривление с действием сил тяготения. Подобное предположение было подтверждено в 1919 астрономическими наблюдениями, показавшими, что луч звезды как прообраз прямой линии искривляется вблизи Солнца под действием гравитационных сил. Общая О. т. не приобрела до сих пор того характера законченной и бесспорной физической концепции, каким обладает специальная теория. Философские выводы О. т. подтверждают и обогащают идеи диалектического материализма. О. т. показала неразрывную связь между пространством и временем (она выражена в едином понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его пространственно-временными формами существования - с др. Определение пространственно-временных свойств в зависимости от особенностей материального движения (“замедление” времени, “искривление” пространства) выявило ограниченность представлений классической физики об абсолютном пространстве и времени, неправомерность их обособления от движущейся материи. О. т. выступила как рациональное обобщение классической механики и распространение принципов механики на область движения тел со скоростями, приближающимися к скорости света. Идеалистические и позитивистские направления буржуазной философии, подменяя понятие системы отсчета “позицией наблюдателя”, пытались использовать О. т. для утверждения субъективного характера науки и зависимости физических процессов от наблюдения. Однако О. т., или релятивистскую механику, не следует смешивать с философским релятивизмом, отрицающим объективность научного знания. О. т. является более адекватным (Адекватность), чем классическая механика, отображением действительности.

Отличное определение

Неполное определение ↓

теория пространства и времени, согласно к-рой они суть лишь относит. "стороны" единой формы существования материи – пространства-времени. Различают частную (или специальную) и общую О. т. (ОТО). Общая О. т. есть теория пространства-времени, объясняющая через его структуру всемирное тяготение (поэтому ее называют также теорией тяготения). Предпосылки О. т. Учение о пространств. формах и отношениях сложилось в древности и было математически оформлено в виде эвклидовой геометрии. Физика восприняла ее в готовом виде. Время вошло в общие законы механики, сформулированные Галилеем и Ньютоном. Представления классич. физики о пространстве и времени отражали прежде всего общие законы взаимного расположения и движения твердых тел. В частности, представление об абсолютном, всюду одинаково текущем времени вполне им отвечало. Согласно второму закону Ньютона, в принципе нет ограничений для скорости, к-рую можно придать телу. Поэтому координация во времени путем передачи воздействий ("сигналов") устанавливается с любой точностью (можно в принципе сверять времена в разных телах с любой точностью), откуда и следует, что время всюду течет одинаково (распространенное мнение, что для этого необходима мгновенная, т.е. с бесконечной скоростью, передача сигналов, ошибочно). Законы механики Галилея - Ньютона формулируются для т.н. инерциальных систем отсчета. В ньютоновской механике выполняется принцип относительности Галилея, согласно к-рому законы механич. явлений одинаковы по отношению ко всем инерциальным системам. Вообще, для нек-рого класса явлений? и для нек-рого класса систем S? выполняется принцип относительности, или, др. словами, эти системы равноправны в отношении данных явлений, если законы явлений? одинаковы в системах S, т.е. когда в двух системах S?, S" для явлений??, ?" одного типа осуществлены одинаковые (относительно этих систем) условия, то эти явления будут течь относительно этих систем совершенно одинаково. Математич. выражение законов этих явлений в этих системах одно и то же, т.е. оно инвариантно (неизменно) относительно перехода от одной системы к другой, выражающегося соответствующим преобразованием координат и др. величин. После того как Максвелл в 60-х гг. 19 в. сформулировал осн. законы электромагнитных явлений, возникла проблема выявления законов электродинамики движущихся тел по отношению к любой инерциальной системе отсчета. Опыты приводили к результатам, противоречащим тому, что "следовало ожидать". Особенно важную роль сыграл опыт Майкельсона (1881–87), не обнаруживший ожидаемой зависимости скорости света от направления его распространения по отношению к направлению движения Земли. Математич. выражение противоречия дал Лоренц (1904), показав, что уравнения Максвелла инвариантны по отношению к преобразованиям (т.н. преобразованиям Лоренца), отличным от преобразований Галилея, относительно к-рых инвариантны законы ньютоновской механики. Разрешение противоречия было осуществлено Эйнштейном в работе "К электродинамике движущихся тел" (А. Einstein, Zur Elektrodynamik bewegter K?rper, 1905) путем построения новой теории пространства и времени – частной О. т. и, соответственно, новой механики – "релятивистской", в отличие от ньютоновской – классической. Независимо к тем же в основном результатам пришел А. Пуанкаре. Частная О. т. Эйнштейн основал свою теорию на след. положениях (к-рые приводятся в несколько дополненной формулировке): I. Существуют инерциальные системы отсчета. II. Геометрия пространства эвклидова. III. Принцип относительности: все инерциальные системы равноправны в отношении всех физич. явлений. IV. Закон постоянства скорости света: относительно всех инерциальных систем свет распространяется с одинаковой скоростью с. Первые три положения заимствованы из классич. теории, только принцип относительности понимается обобщенно; четвертое является обобщением данных опыта (опыт Майкельсона и др.) и вполне согласуется с теорией электромагнетизма. Из положения II, IV чисто математически вытекает, что для любых инерциальных систем S, S? координаты х, у, z, x?, y?, z и времена t, t? связаны преобразованием Лоренца. В частности, если оси координат x, x? в системах S и S? параллельны и ось x направлена по движению S? относительно S, то (при соответствующем выборе масштабов) разности координат и времени в системах S и S? для любых двух событий - мгновенно-точечных явлений Р1, ?2 связаны формулами: где? - скорость S? относительно S. Из этих соотношений вытекают след. выводы: (1) Системы могут двигаться друг относительно друга со скоростью, меньшей скорости света (т.к. при??c формулы теряют смысл). (2) Два события, одновременные в S (t12=0), но происходящие в точках с разными координатами x (x12?0), не одновременны в S? (t?12?0). Более того, событие Р1, предшествующее Р2 относительно системы S, может следовать за ним относительно S?. Именно, если t12>0, но меньше?/c2 · x12, то t?12

Ибо методологически неверно, не имея определения базового понятия “время”, пытаться создавать определение производного от него понятия “одновременность”.

В мысленном же эксперименте, доказывающем относительность одновременности, совершается еще одна, теперь уже концептуальная, ошибка - один из рассматриваемых в эксперименте объектов считается безотносительно покоящимся. Поочередный безотносительный покой рассматриваемых объектов, рождает эффект относительности одновременности.

В правильно же поставленном эксперименте, если рассматриваются только два объекта, а в обозримом пространстве нет ни мирового эфира, и нет никаких иных объектов, относительно которых можно было бы один из рассматриваемых объектов считать покоящимся, то в этом случае мы обязаны признать оба объекта либо равноправно движущимися, либо равноправно покоящимися относительно друг друга, что исключает возможность рождения эффекта относительности одновременности.

Не нужно иметь ни сильно богатое воображение , ни могучий интеллект, чтобы осознать, что в мысленный эксперимент Эйнштейна закралась досадная ошибка, которая является достаточным основанием для признания частной теории относительности Эйнштейна целиком и полностью не адекватной объективной реальности.

Отчего же теория, в основе которой заложена такая простенькая, очевидная и многими замеченная ошибка, вот уже сто лет живет и завоевывает умы далеко не глупых людей.

Причин тому несколько. Одна из них заключается в том, что до сих пор нет четких и однозначных определений таких понятий, как “время”, “пространство”, “движение”.

Более двух тысяч лет тому назад Зенон, пытаясь обратить внимание исследователей на серьезность этой проблемы, создал свои знаменитые апории, которые есть не что иное, как формально-логические противоречия, которые Зенон сформировал на основе не адекватных объективной реальности определений некоторых понятий.

“Ахиллес не способен догнать черепаху” потому, что пока Ахиллес преодолевает расстояние между точками их изначального пребывания, черепаха за это время тоже проползет какое-то расстояние, за время преодоления Ахиллесом которого, черепаха вновь окажется в иной точке. И так бесконечно.

Понятно, если Ахиллес будет стремиться в точку, где черепахи уже нет, или вообще никогда не было, то он ее никогда не догонит.

А если понятие “догнать” определить как точку их встречи, как оно в реальности и есть, и направить Ахиллеса в эту точку, то и проблем в описании этой погони не будет, как нет их и в реальности.

В апории “Дихотомия” доказывается, что никакой путь преодолеть вообще невозможно потому, что для того чтобы преодолеть какой-то путь, необходимо прежде преодолеть его половину, а чтобы преодолеть эту половину, нужно преодолеть половину этой половины. И так бесконечно. Поэтому даже начать движение невозможно.

Но если понятие “преодолеть путь” определить как процесс перемещения объекта из начальной точки в конечную, где объект преодолевает половину пути и какие угодно иные его части не “прежде, чем”, а в процессе преодоления пути в целом, то, опять же, проблемы описания процесса движения исчезают.

“Летящая стрела покоится” потому, что если взять такое малое мнгновение, за которое стрела не успела изменить своего пространственного положения, и, следовательно, покоилась, то сумма таких мгновений может родить только покой, но не движение.

Но если понятие “время” вообще и “мгновение” в частности определить не как Ньютон - абстрактная длительность, а как Аристотель - время есть число движения, т.е. время есть последовательность всех тех изменений, которые протекают в Мире, изменяя его. Если любое, даже самое малое, мгновение определяется произошедшими за это мгновение какими-то изменениями образующих Мир элементов, включая и изменение пространственного положения стрелы, то в этом случае получается, что если летящая стрела не изменила своего пространственного положения, то, стало быть, и не было никакого, даже самого малого, мгновения. Нет изменений - нет времени.

В апории “Стадий” Зенон ставит мысленный эксперимент, где время понимается не как последовательность изменений, а как абстрактная длительность, имеющая самую малую и далее неделимую величину - “атом” времени. Пространство понимается не как взаиморасположение образующих Мир элементов, а как вместилище для объектов Мира, также имеющее “атом” пространства.

В эксперименте два объекта движутся мимо третьего в противоположные стороны со скоростями относительно этого третьего объекта в один атом пространства за один атом времени. А это означает, что относительно друг друга они движутся со скоростью один атом пространства за половину неделимого атома времени. Вновь противоречие.

Создающий задачу, знает ее решение.

Зенон знал, что не существует атомов времени и пространства. Знал, что любое мгновение определяется бесконечным количеством изменений, произо шедших за это мгновение с образующими Мир элементами. Знал, что мертвый, абсолютно неподвижный, неизменный Мир есть Мир без времени, что время определяется последовательностью всех изменений, происходящих в Мире и потому понятие “время в собственной системе отсчета объекта” есть такая же нелепица, как и понятие “человечество в отдельно взятой деревне”.

По причине бесконечного количества образующих Мир элементов и их разнообразных соотношений, мы не имеем права предполагать, что Мир когда-либо может стать таким же, каким когда-то уже был. “Нельзя дважды войти в одну и ту же реку”. Так своеобразно Гераклит сформулировал закон необратимой и неповторяющейся последовательности развития Мира, который является абсолютным закон развития как Мира в целом, так и развития отдельных образующих Мир элементов. Поэтому геометрическим аналогом времени является бесконечная прямая, приходящая из бесконечного прошлого и уходящая в бесконечное будущее.

Геометрическим аналогом одновременности является бесконечная прямая, проходящая перпендикулярно прямой времени. Каждой точке прямой одновременности соответствует качественное, количественное и пространственное состояние каждого образующего Мир элемента на данное мгновение, геометрическим аналогом которого является точка пересечения прямой времени с прямой одновременности.

Пространство есть совокупность образующих его элементов (от элементарных частиц, до планет и звезд).

Пространство образовано элементами, а не наполнено ими.

Пространства самого по себе, без образующих его элементов, в объективной реальности не существует точно так же, как не существует погоды без образующих ее атмосферных явлений (ветер, снег, температура …), как не существует ширины и длины без измеряемого объекта.

Пустое пространство так же, как и пустое время с позиции диалектического материализма может иметь место только в виде абстрактного субъективного образа, не имеющего адекватного аналога в объективной реальность.

Проблема понимания теории Эйнштейна, - как, кстати, и апорий Зенона, - не физико-математическая, а чисто философская, и заключается она в адекватном объективной реальности отражении таких базовых мировоззренческих понятий, как “время”, “движение”, “пространство”. В рамках узкоспециальных физико-математических знаний эта проблема неразрешима.

Не адекватное объективной реальности отражение этих понятий рождает в описании этой реальности формально-логические противоречия. Зенон создавал их целенаправленно. В теории Эйнштейна они родились случайно в результате ухода от объективной реальности в мир субъективных абстракций в виде абстрактной четырехмерной системы отсчета пространство-время, которая позволяет совершать ошибки, подобные концептуальной ошибке Эйнштейна.

Объективная же реальность имеет пятимерную гравитационно-пространственно-временную систему отсчета, где пятой мерой является имеющая место быть в любой точке мирового пространства вектор гравитации, показывающий силу и направление гравитационного притяжения главного для данного пространства источника гравитации.

В пятимерной системе отсчета нет места произвольным субъективным представлениям о покое и движении объектов.

Пятимерная система отсчета, построенная на главном для нашей галактики векторе гравитации, который показывает направление гравитационного притяжения находящегося в центре галактики источника гравитации, не дает нам права наряду с правотой Коперника считать правым и Птолемея, как это следует из частной теории относительности Эйнштейна.

Ньютон считал, что объекты в космическом пространстве движутся относительно неподвижного мирового эфира. Но проведенный в конце 19-го века Максвеллом эксперимент по обнаружению эфирного ветра, который, по его мнению, должен проявляться при движении Земли вокруг Солнца, не дал положительного результата.

А в начале 20-го века Эйнштейн выдвинул идею, где пустое пространство, сочетаясь с пустым временем, рождало абстрактную четырехмерную систему отсчета пространство-время, в рамках которой довольно просто решалась в математической форме количественная сторона некоторых процессов, но которая в принципе не могла отражать физику рассматриваемых процессов.

Чтобы поймать льва в пустыне, нужно плоскость пустыни, поставив вертикально, спроецировать в прямую линию. А прямую линию, поставив вертикально, спроецировать в точку. И если в эту точку предварительно поставить клетку, лев окажется прямо в этой клетке.

Видимо, подобного рода простота решения проблем в рамках эйнштейновской абстракции вдохновила большинство физиков и математиков на пропаганду теории относительности Эйнштейна.

Вообще, большинство в науке формируется примерно так же, как и большинство в политике.

Когда политическая партия приходит к власти, большинство тут как тут: чего изволите, за кого голосуем.

Власть в науке это мнение ведущих ученых. И стоит только ведущим ученым сказать: в этом что-то есть, как тут же большинство начинает поддакивать: конечно, кто же этого не знает.

В 1921 - 1925 годах Миллер, предположив, что эфир, захватываясь Земной гравитацией, у самой поверхности Земли становится относительно этой поверхности неподвижным, провел опыты по схеме Майкельсона на высоте 6 тысяч футов.

Эфир был обнаружен.

Но было поздно. Большинство уже не хотело слышать об этих фактах. Большинство уже искало только факты, подтверждающие правильность теории относительности Эйнштейна. И находило их: луч света от звезды, проходя около Солнца, как и предсказывала теория Эйнштейна, искривлялся.

Большинство торжествовало, замалчивая тот факт, луч искривлялся вовсе не так, как должен был делать по теории. Угол искривления луча в период слабой активности Солнца был вдвое меньше предсказанного теорией, а в период высокой активности - вдвое больше. Траектория распространения луча также была гораздо сложнее предсказанной. Нужны были исследования физических причин этих явлений.

Но эйнштейновская абстракция это чисто математическая абстракция, где нет, и в принципе не может быть никакой физики.

Просто пустое пространство. Просто искривляется вблизи гравитирующего тела. Луч света искривляется просто потому, что пустое пространство кривое.

Искать здесь физику все равно, что искать возможность плоскость реальной пустыни спроецировать в реальную точку.

Современная физика в своем терминологическом инструментарии имеет не только абстрактное время, абстрактное пространство, но и абстрактную энергию.

Процесс аннигиляции электрона с позитроном современная физика описывает как исчезновение материи, как превращение материи в энергию в виде не имеющих массу покоя фотонов.

Поразительно! При феноменальнейшем объеме сделанных человечеством за последнее столетие открытий и изобретений - (от робких полетов над поверхностью Земли - до обыденности полетов на другие планеты; от примитивнейших радиоприемников - до лазеров, мобильников и компьютеров; от мичуринских скрещиваний - до генной инженерии и клонирования) - в то же самое время в вопросах осмысления понятий “время”, “пространство” и “энергия” мы остаемся на уровне Митрофанушки, который, как известно, понятие “дверь” считал не существительным, а прилагательным, потому, что дверь “прилагается” к косяку.

Пора, наконец, понять, что время, пространство и энергия “прилагаются” к материи в виде НЕОТЪЕМЛЕМЫХ ее свойств, и потому сами по себе, без своих материальных носителей, в объективной реальности не существуют.

Поэтому время не может замедляться, пространство не может искривляться, а энергия не может распространяться в виде нематериального фотона.

В попытке спасти частную теорию относительности, любители абстракций выдумали термин “время в собственной системе отсчета объекта”, утверждая, что здесь имеется в виду не абстрактное, пустое время, а конкретные протекающие в этой системе отсчета процессы, которые замедляются при движении системы.

Но это “изобретение” лишь обнажило заложенную в теории абсурдность, которая была менее очевидна, когда время было представлено в виде самостоятельной абстрактной сущности.

По теории, замедление времени может иметь место как в движущейся системе отсчета, так и вне ее, если наблюдатель считает ее покоящейся.

Так что, вопрос - кто же из братьев-близнецов в результате окажется старше, если результат зависит исключительно от субъективной точки зрения наблюдателя, оказался для частной теории относительности абсолютно тупиковым вопросом.

Кстати, для истинного физика, вопрос - где происходит замедление процессов, является гораздо менее интересным, чем вопрос - почему это происходит. Почему, к примеру, происходит замедление процесса распада мезонов.

Поразительно, но любителей абстракций этот вопрос, похоже, совсем не интересует.

Да это и понятно, ведь в рамках пустого пространства и этот вопрос превращается в абсолютно тупиковый.

Да и разве только он.

* Как формируются волновые свойства элементарных частиц?

* Что является средой распространения электромагнитных волн?

* Как осуществляется гравитационное взаимодействие тел?

* Как объясняется звездная аберрация?
* Почему траектория свободно падающего на поверхность Земли тела искривляется по направлению суточного вращения Земли?

* Как объяснить отрицательный результат опыта Майкельсона по обнаружению эфира, проводимого на поверхности Земли, и положительный результат опыта Морли, проводимого на высоте 6000 футов над поверхностью Земли?

* Почему величина угла искривления луча света, проходящего от звезды мимо Солнца, зависит от активности Солнца?

* Исчезновение материи с позиции диалектического материализма есть явление в принципе невозможное. Как в этом случае описать процесс аннигиляции электрона с позитроном?

* Что оказывает сопротивление движению элементарных частиц в вакуумном пространстве ускорителей?

Ни на один из поставленных вопросов современная (официальная) физика не способна дать вразумительного ответа.

И главной причиной такого печального положения дел является то стратегическое направление развитие фундаментальной физики, которое было определено Эйнштейном и поддержано большинством научного сообщества.

И этому большинству теория Эйнштейна нравится.

Нравится своей экстравагантностью (замедление хода времени, собственное время объекта)

Нравится своими парадоксами (парадокс близнецов, парадокс волна-частица). Нравится даже тем, что бросает вызов здравому смыслу.

Нравится потому, что это большинство имеет возможность ощутить себя членами интеллектуального элитного клуба: только им - умным - дано видеть “новое платье короля”.

Простым смертным, разумеется, не дано понять, как же может искривляться и замедляться то, чего не существует в объективной реальности как самостоятельной сущности.

Не дано понять того, что если увеличение продолжительности жизни мезонов можно объяснять замедлением хода времени в собственной системе отсчета мезонов, отчего же катастрофическое уменьшение средней продолжительности жизни россиян в наши дни нельзя объяснить ускорением хода времени в российской собственной системе отсчета.

Но никакие, даже убийственно точные и логичные, аргументы не способны переубедить большинство. Потому, что никто и никогда из клуба высоких интеллектуалов добровольно не переходил в клуб с противоположным названием.

Поэтому надежда только на молодежь, обращаясь к которой в духе Козьмы Пруткова, хочется сказать: зри в корень, то бишь в определение понятий, и ты отчетливо увидишь “наготу короля”.

В заключение хотелось бы еще сказать, что наука развивается не большинством. Наука развивается одиночками, которые нацелены не на поддакивание начальству, не на собственное благополучие, не на чины.

Они нацелены на истину.

И в фундаментальной физике они есть.

И разрабатывая свои гипотезы, объясняя многое из того, что не способна объяснить официальная физика, сетуя на то, что не могут объяснить всех загадок микромира, они понимают главное: какие бы сложности ни ожидали фундаментальную физику на пути признания факта существования эфира образованного неизвестными нам пока материальными частицами, этот факт, тем не менее, мы обязаны признать, потому, что другого пути развития физики в рамках диалектического материализма просто нет, и в принципе быть не может.

Иные «мудрецы», пытаясь решить проблему Эйнштейна-Зенона, утверждают, что определение понятий – вовсе не главная задача, главным является раскрытие сущности явления.

Это мнение рождается непониманием термина «определение понятий», который как раз и предполагает не только раскрытие сущности явления, но и создание логико-терминологического аппарата, посредством которого описывается эта сущность. Без создания логико-терминологического аппарата раскрытая исследователем сущность явления останется достоянием только данного исследователя, и не сможет превратиться в общеизвестный факт общественного сознания.

Литература

1. Брусин Л.Д., Брусин С.Д. Иллюзия Эйнштейна и реальность Ньютона. Москва, 1993г.

2. Горбацевич Ф.Ф.
3. Краснояров В. Изобретатель и рационализатор, № 7, 1990г.