Метод главных компонент (мгк): основные формулы и процедуры. Как работает метод главных компонент (PCA) на простом примере Первая главная компонента

Метод главных компонент – это метод, который переводит большое количество связанных между собой (зависимых, коррелирующих) переменных в меньшее количество независимых переменных, так как большое количество переменных часто затрудняет анализ и интерпретацию информации. Строго говоря, этот метод не относится к факторному анализу, хотя и имеет с ним много общего. Специфическим является, во-первых, то, что в ходе вычислительных процедур одновременно получают все главные компоненты и их число первоначально равно числу исходных переменных; во-вторых, постулируется возможность полного разложения дисперсии всех исходных переменных, т.е. ее полное объяснение через латентные факторы (обобщенные признаки).

Например, представим, что мы провели исследование, в котором измерили у студентов интеллект по тесту Векслера, тесту Айзенка, тесту Равена, а также успеваемость по социальной, когнитивной и общей психологии. Вполне возможно, что показатели различных тестов на интеллект будут коррелировать между собой, так как они, в конце концов, измеряют одну характеристику испытуемого – его интеллектуальные способности, хотя и по-разному. Если переменных в исследовании слишком много (x 1 , x 2 , …, x p ) , а некоторые из них взаимосвязаны, то у исследователя иногда возникает желание уменьшить сложность данных, сократив количество переменных. Для этого и служит метод главных компонент, который создает несколько новых переменных y 1 , y 2 , …, y p , каждая из которых является линейной комбинацией первоначальных переменных x 1 , x 2 , …, x p :

y 1 =a 11 x 1 +a 12 x 2 +…+a 1p x p

y 2 =a 21 x 1 +a 22 x 2 +…+a 2p x p

(1)

y p =a p1 x 1 +a p2 x 2 +…+a pp x p

Переменные y 1 , y 2 , …, y p называются главными компонентами или факторами. Таким образом, фактор – это искусственный статистический показатель, возникающий в результате специальных преобразований корреляционной матрицы . Процедура извлечения факторов называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, определяемые в результате факторизации, как правило, не равноценны по своему значению.

Коэффициенты a ij , определяющие новую переменную, выбираются таким образом, чтобы новые переменные (главные компоненты, факторы) описывали максимальное количество вариативности данных и не коррелировали между собой. Часто полезно представить коэффициенты a ij таким образом, чтобы они представляли собой коэффициент корреляции между исходной переменной и новой переменной (фактором). Это достигается умножением a ij на стандартное отклонение фактора. В большинстве статистических пакетов так и делается (в программе STATISTICA тоже). Коэффициенты a ij Обычно они представляются в виде таблицы, где факторы располагаются в виде столбцов, а переменные в виде строк:

Такая таблица называется таблицей (матрицей) факторных нагрузок. Числа, приведенные в ней, являются коэффициентами a ij .Число 0,86 означает, что корреляция между первым фактором и значением по тесту Векслера равна 0,86. Чем выше факторная нагрузка по абсолютной величине, тем сильнее связь переменной с фактором.

Метод главных компонент

Метод главных компонент (англ. Principal component analysis, PCA ) - один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации . Изобретен К. Пирсоном (англ. Karl Pearson ) в г. Применяется во многих областях, таких как распознавание образов , компьютерное зрение , сжатие данных и т. п. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Иногда метод главных компонент называют преобразованием Кархунена-Лоэва (англ. Karhunen-Loeve ) или преобразованием Хотеллинга (англ. Hotelling transform ). Другие способы уменьшения размерности данных - это метод независимых компонент, многомерное шкалирование, а также многочисленные нелинейные обобщения: метод главных кривых и многообразий, метод упругих карт , поиск наилучшей проекции (англ. Projection Pursuit ), нейросетевые методы «узкого горла », и др.

Формальная постановка задачи

Задача анализа главных компонент, имеет, как минимум, четыре базовых версии:

  • аппроксимировать данные линейными многообразиями меньшей размерности;
  • найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (то есть среднеквадратичное отклонение от среднего значения) максимален;
  • найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально;
  • для данной многомерной случайной величины построить такое ортогональное преобразование координат, что в результате корреляции между отдельными координатами обратятся в ноль.

Первые три версии оперируют конечными множествами данных. Они эквивалентны и не используют никакой гипотезы о статистическом порождении данных. Четвёртая версия оперирует случайными величинами. Конечные множества появляются здесь как выборки из данного распределения, а решение трёх первых задач - как приближение к «истинному» преобразованию Кархунена-Лоэва. При этом возникает дополнительный и не вполне тривиальный вопрос о точности этого приближения.

Аппроксимация данных линейными многообразиями

Иллюстрация к знаменитой работе К. Пирсона (1901): даны точки на плоскости, - расстояние от до прямой . Ищется прямая , минимизирующая сумму

Метод главных компонент начинался с задачи наилучшей аппроксимации конечного множества точек прямыми и плоскостями (К. Пирсон, 1901). Дано конечное множество векторов . Для каждого среди всех -мерных линейных многообразий в найти такое , что сумма квадратов уклонений от минимальна:

,

где - евклидово расстояние от точки до линейного многообразия. Всякое -мерное линейное многообразие в может быть задано как множество линейных комбинаций , где параметры пробегают вещественную прямую , а - ортонормированный набор векторов

,

где евклидова норма, - евклидово скалярное произведение, или в координатной форме:

.

Решение задачи аппроксимации для даётся набором вложенных линейных многообразий , . Эти линейные многообразия определяются ортонормированным набором векторов (векторами главных компонент) и вектором . Вектор ищется, как решение задачи минимизации для :

.

Векторы главных компонент могут быть найдены как решения однотипных задач оптимизации :

1) централизуем данные (вычитаем среднее): . Теперь ; 2) находим первую главную компоненту как решение задачи; . Если решение не единственно, то выбираем одно из них. 3) Вычитаем из данных проекцию на первую главную компоненту: ; 4) находим вторую главную компоненту как решение задачи . Если решение не единственно, то выбираем одно из них. … 2k-1) Вычитаем проекцию на -ю главную компоненту (напомним, что проекции на предшествующие главные компоненты уже вычтены): ; 2k) находим k-ю главную компоненту как решение задачи: . Если решение не единственно, то выбираем одно из них. …

На каждом подготовительном шаге вычитаем проекцию на предшествующую главную компоненту. Найденные векторы ортонормированы просто в результате решения описанной задачи оптимизации, однако чтобы не дать ошибкам вычисления нарушить взаимную ортогональность векторов главных компонент, можно включать в условия задачи оптимизации.

Неединственность в определении помимо тривиального произвола в выборе знака ( и решают ту же задачу) может быть более существенной и происходить, например, из условий симметрии данных. Последняя главная компонента - единичный вектор, ортогональный всем предыдущим .

Поиск ортогональных проекций с наибольшим рассеянием

Первая главная компонента максимизирует выборочную дисперсию проекции данных

Пусть нам дан центрированный набор векторов данных (среднее арифметическое значение равно нулю). Задача - найти такое ортогональное преобразование в новую систему координат , для которого были бы верны следующие условия:

Теория сингулярного разложения была создана Дж. Дж. Сильвестром (англ. James Joseph Sylvester ) в г. и изложена во всех подробных руководствах по теории матриц .

Простой итерационный алгоритм сингулярного разложения

Основная процедура - поиск наилучшего приближения произвольной матрицы матрицей вида (где - -мерный вектор, а - -мерный вектор) методом наименьших квадратов:

Решение этой задачи дается последовательными итерациями по явным формулам. При фиксированном векторе значения , доставляющие минимум форме , однозначно и явно определяются из равенств :

Аналогично, при фиксированном векторе определяются значения :

B качестве начального приближения вектора возьмем случайный вектор единичной длины, вычисляем вектор , далее для этого вектора вычисляем вектор и т. д. Каждый шаг уменьшает значение . В качестве критерия остановки используется малость относительного уменьшения значения минимизируемого функционала за шаг итерации () или малость самого значения .

В результате для матрицы получили наилучшее приближение матрицей вида (здесь верхним индексом обозначен номер приближения). Далее, из матрицы вычитаем полученную матрицу , и для полученной матрицы уклонений вновь ищем наилучшее приближение этого же вида и т. д., пока, например, норма не станет достаточно малой. В результате получили итерационную процедуру разложения матрицы в виде суммы матриц ранга 1, то есть . Полагаем и нормируем векторы : В результате получена аппроксимация сингулярных чисел и сингулярных векторов (правых - и левых - ).

К достоинствам этого алгоритма относится его исключительная простота и возможность почти без изменений перенести его на данные с пробелами , а также взвешенные данные.

Существуют различные модификации базового алгоритма, улучшающие точность и устойчивость. Например, векторы главных компонент при разных должны быть ортогональны «по построению», однако при большом числе итерации (большая размерность, много компонент) малые отклонения от ортогональности накапливаются и может потребоваться специальная коррекция на каждом шаге, обеспечивающая его ортогональность ранее найденным главным компонентам.

Сингулярное разложение тензоров и тензорный метод главных компонент

Часто вектор данных имеет дополнительную структуру прямоугольной таблицы (например, плоское изображение) или даже многомерной таблицы - то есть тензора : , . В этом случае также эффективно применять сингулярное разложение. Определение, основные формулы и алгоритмы переносятся практически без изменений: вместо матрицы данных имеем -индексную величину , где первый индекс -номер точки (тензора) данных.

Основная процедура - поиск наилучшего приближения тензора тензором вида (где - -мерный вектор ( - число точек данных), - вектор размерности при ) методом наименьших квадратов:

Решение этой задачи дается последовательными итерациями по явным формулам. Если заданы все векторы-сомножители кроме одного , то этот оставшийся определяется явно из достаточных условий минимума.

B качестве начального приближения векторов () возьмем случайные векторы единичной длины, вычислим вектор , далее для этого вектора и данных векторов вычисляем вектор и т. д. (циклически перебирая индексы) Каждый шаг уменьшает значение . Алгоритм, очевидно, сходится. В качестве критерия остановки используется малость относительного уменьшения значения минимизируемого функционала за цикл или малость самого значения . Далее, из тензора вычитаем полученное приближение и для остатка вновь ищем наилучшее приближение этого же вида и т. д., пока, например, норма очередного остатка не станет достаточно малой.

Это многокомпонентное сингулярное разложение (тензорный метод главных компонент) успешно применяется при обработке изображений, видеосигналов, и, шире, любых данных, имеющих табличную или тензорную структуру.

Матрица преобразования к главным компонентам

Матрица преобразования данных к главным компонентам состоит из векторов главных компонент, расположенных в порядке убывания собственных значений:

( означает транспонирование),

То есть, матрица является ортогональной .

Большая часть вариации данных будет сосредоточена в первых координатах, что позволяет перейти к пространству меньшей размерности.

Остаточная дисперсия

Пусть данные центрированы, . При замене векторов данных на их проекцию на первые главных компонент вносится средний квадрат ошибки в расчете на один вектор данных:

где собственные значения эмпирической ковариационной матрицы , расположенные в порядке убывания, с учетом кратности.

Эта величина называется остаточной дисперсией . Величина

называется объяснённой дисперсией . Их сумма равна выборочной дисперсии. Соответствующий квадрат относительной ошибки - это отношение остаточной дисперсии к выборочной дисперсии (то есть доля необъяснённой дисперсии ):

По относительной ошибке оценивается применимость метода главных компонент с проецированием на первые компонент.

Замечание : в большинстве вычислительных алгоритмов собственные числа с соответствующими собственными векторами - главными компонентами вычисляются в порядке «от больших - к меньшим». Для вычисления достаточно вычислить первые собственных чисел и след эмпирической ковариационной матрицы , (сумму диагональных элементов , то есть дисперсий по осям). Тогда

Отбор главных компонент по правилу Кайзера

Целевой подход к оценке числа главных компонент по необходимой доле объяснённой дисперсии формально применим всегда, однако неявно он предполагает, что нет разделения на «сигнал» и «шум», и любая заранее заданная точность имеет смысл. Поэтому часто более продуктивна иная эвристика, основывающаяся на гипотезе о наличии «сигнала» (сравнительно малая размерность, относительно большая амплитуда) и «шума» (большая размерность, относительно малая амплитуда). С этой точки зрения метод главных компонент работает как фильтр: сигнал содержится, в основном, в проекции на первые главные компоненты, а в остальных компонентах пропорция шума намного выше.

Вопрос: как оценить число необходимых главных компонент, если отношение «сигнал/шум» заранее неизвестно?

Простейший и старейший метод отбора главных компонент даёт правило Кайзера (англ. Kaiser"s rule ): значимы те главные компоненты, для которых

то есть превосходит среднее значение (среднюю выборочную дисперсию координат вектора данных). Правило Кайзера хорошо работает в простых случаях, когда есть несколько главных компонент с , намного превосходящими среднее значение, а остальные собственные числа меньше него. В более сложных случаях оно может давать слишком много значимых главных компонент. Если данные нормированы на единичную выборочную дисперсию по осям, то правило Кайзера приобретает особо простой вид: значимы только те главные компоненты, для которых

Оценка числа главных компонент по правилу сломанной трости

Пример: оценка числа главных компонент по правилу сломанной трости в размерности 5.

Одним из наиболее популярных эвристических подходов к оценке числа необходимых главных компонент является правило сломанной трости (англ. Broken stick model ) . Набор нормированных на единичную сумму собственных чисел (, ) сравнивается с распределением длин обломков трости единичной длины, сломанной в -й случайно выбранной точке (точки разлома выбираются независимо и равнораспределены по длине трости). Пусть () - длины полученных кусков трости, занумерованные в порядке убывания длины: . Нетрудно найти математическое ожидание :

По правилу сломанной трости -й собственный вектор (в порядке убывания собственных чисел ) сохраняется в списке главных компонент, если

На Рис. приведён пример для 5-мерного случая:

=(1+1/2+1/3+1/4+1/5)/5; =(1/2+1/3+1/4+1/5)/5; =(1/3+1/4+1/5)/5; =(1/4+1/5)/5; =(1/5)/5.

Для примера выбрано

=0.5; =0.3; =0.1; =0.06; =0.04.

По правилу сломанной трости в этом примере следует оставлять 2 главных компоненты:

По оценкам пользователей, правило сломанной трости имеет тенденцию занижать количество значимых главных компонент.

Нормировка

Нормировка после приведения к главным компонентам

После проецирования на первые главных компонент с удобно произвести нормировку на единичную (выборочную) дисперсию по осям. Дисперсия вдоль й главной компоненты равна ), поэтому для нормировки надо разделить соответствующую координату на . Это преобразование не является ортогональным и не сохраняет скалярного произведения. Ковариационная матрица проекции данных после нормировки становится единичной, проекции на любые два ортогональных направления становятся независимыми величинами, а любой ортонормированный базис становится базисом главных компонент (напомним, что нормировка меняет отношение ортогональности векторов). Отображение из пространства исходных данных на первые главных компонент вместе с нормировкой задается матрицей

.

Именно это преобразование чаще всего называется преобразованием Кархунена-Лоэва. Здесь - векторы-столбцы, а верхний индекс означает транспонирование.

Нормировка до вычисления главных компонент

Предупреждение : не следует путать нормировку, проводимую после преобразования к главным компонентам, с нормировкой и «обезразмериванием» при предобработке данных , проводимой до вычисления главных компонент. Предварительная нормировка нужна для обоснованного выбора метрики, в которой будет вычисляться наилучшая аппроксимация данных, или будут искаться направления наибольшего разброса (что эквивалентно). Например, если данные представляют собой трёхмерные векторы из «метров, литров и килограмм», то при использовании стандартного евклидового расстояния разница в 1 метр по первой координате будет вносить тот же вклад, что разница в 1 литр по второй, или в 1 кг по третьей. Обычно системы единиц, в которых представлены исходные данные, недостаточно точно отображают наши представления о естественных масштабах по осям, и проводится «обезразмеривание»: каждая координата делится на некоторый масштаб, определяемый данными, целями их обработки и процессами измерения и сбора данных.

Есть три cущественно различных стандартных подхода к такой нормировке: на единичную дисперсию по осям (масштабы по осям равны средним квадратичным уклонениям - после этого преобразования ковариационная матрица совпадает с матрицей коэффициентов корреляции), на равную точность измерения (масштаб по оси пропорционален точности измерения данной величины) и на равные требования в задаче (масштаб по оси определяется требуемой точностью прогноза данной величины или допустимым её искажением - уровнем толерантности). На выбор предобработки влияют содержательная постановка задачи, а также условия сбора данных (например, если коллекция данных принципиально не завершена и данные будут ещё поступать, то нерационально выбирать нормировку строго на единичную дисперсию, даже если это соответствует смыслу задачи, поскольку это предполагает перенормировку всех данных после получения новой порции; разумнее выбрать некоторый масштаб, грубо оценивающий стандартное отклонение, и далее его не менять).

Предварительная нормировка на единичную дисперсию по осям разрушается поворотом системы координат, если оси не являются главными компонентами, и нормировка при предобработке данных не заменяет нормировку после приведения к главным компонентам.

Механическая аналогия и метод главных компонент для взвешенных данных

Если сопоставить каждому вектору данных единичную массу, то эмпирическая ковариационная матрица совпадёт с тензором инерции этой системы точечных масс (делённым на полную массу ), а задача о главных компонентых - с задачей приведения тензора инерции к главным осям. Можно использовать дополнительную свободу в выборе значений масс для учета важности точек данных или надежности их значений (важным данным или данным из более надежных источников приписываются бо́льшие массы). Если вектору данных придаётся масса , то вместо эмпирической ковариационной матрицы получим

Все дальнейшие операции по приведению к главным компонентам производятся так же, как и в основной версии метода: ищем ортонормированный собственный базис , упорядочиваем его по убыванию собственных значений, оцениваем средневзвешенную ошибку аппроксимации данных первыми компонентами (по суммам собственных чисел ), нормируем и т. п.

Более общий способ взвешивания даёт максимизация взвешенной суммы попарных расстояний между проекциями. Для каждых двух точек данных, вводится вес ; и . Вместо эмпирической ковариационной матрицы используется

При симметричная матрица положительно определена, поскольку положительна квадратичная форма:

Далее ищем ортонормированный собственный базис , упорядочиваем его по убыванию собственных значений, оцениваем средневзвешенную ошибку аппроксимации данных первыми компонентами и т. д. - в точности так же, как и в основном алгоритме.

Этот способ применяется при наличии классов : для из разных классов вес вес выбирается бо́льшим, чем для точек одного класса. В результате, в проекции на взвешенные главные компоненты различные классы «раздвигаются» на большее расстояние.

Другое применение - снижение влияния больших уклонений (оутлайеров, англ. Outlier ), которые могут искажать картину из-за использования среднеквадратичного расстояния: если выбрать , то влияние больших уклонений будет уменьшено. Таким образом, описанная модификация метода главных компонент является более робастной , чем классическая.

Специальная терминология

В статистике при использовании метода главных компонент используют несколько специальных терминов.

Матрица данных ; каждая строка - вектор предобработанных данных (центрированных и правильно нормированных ), число строк - (количество векторов данных), число столбцов - (размерность пространства данных);

Матрица нагрузок (Loadings) ; каждый столбец - вектор главных компонент, число строк - (размерность пространства данных), число столбцов - (количество векторов главных компонент, выбранных для проецирования);

Матрица счетов (Scores) ; каждая строка - проекция вектора данных на главных компонент; число строк - (количество векторов данных), число столбцов - (количество векторов главных компонент, выбранных для проецирования);

Матрица Z-счетов (Z-scores) ; каждая строка - проекция вектора данных на главных компонент, нормированная на единичную выборочную дисперсию; число строк - (количество векторов данных), число столбцов - (количество векторов главных компонент, выбранных для проецирования);

Матрица ошибок (или остатков ) (Errors or residuals) .

Основная формула:

Пределы применимости и ограничения эффективности метода

Метод главных компонент применим всегда. Распространённое утверждение о том, что он применим только к нормально распределённым данным (или для распределений, близких к нормальным) неверно: в исходной формулировке К. Пирсона ставится задача об аппроксимации конечного множества данных и отсутствует даже гипотеза о их статистическом порождении, не говоря уж о распределении.

Однако метод не всегда эффективно снижает размерность при заданных ограничениях на точность . Прямые и плоскости не всегда обеспечивают хорошую аппроксимацию. Например, данные могут с хорошей точностью следовать какой-нибудь кривой, а эта кривая может быть сложно расположена в пространстве данных. В этом случае метод главных компонент для приемлемой точности потребует нескольких компонент (вместо одной), или вообще не даст снижения размерности при приемлемой точности. Для работы с такими «кривыми» главными компонентами изобретен метод главных многообразий и различные версии нелинейного метода главных компонент . Больше неприятностей могут доставить данные сложной топологии. Для их аппроксимации также изобретены различные методы, например самоорганизующиеся карты Кохонена , нейронный газ или топологические грамматики . Если данные статистически порождены с распределением, сильно отличающимся от нормального, то для аппроксимации распределения полезно перейти от главных компонент к независимым компонентам , которые уже не ортогональны в исходном скалярном произведении. Наконец, для изотропного распределения (даже нормального) вместо эллипсоида рассеяния получаем шар, и уменьшить размерность методами аппроксимации невозможно.

Примеры использования

Визуализация данных

Визуализация данных - представление в наглядной форме данных эксперимента или результатов теоретического исследования.

Первым выбором в визуализации множества данных является ортогональное проецирование на плоскость первых двух главных компонент (или 3-мерное пространство первых трёх главных компонент). Плоскость проектирования является, по сути плоским двумерным «экраном», расположенным таким образом, чтобы обеспечить «картинку» данных с наименьшими искажениями. Такая проекция будет оптимальна (среди всех ортогональных проекций на разные двумерные экраны) в трех отношениях:

  1. Минимальна сумма квадратов расстояний от точек данных до проекций на плоскость первых главных компонент, то есть экран расположен максимально близко по отношению к облаку точек.
  2. Минимальна сумма искажений квадратов расстояний между всеми парами точек из облака данных после проецирования точек на плоскость.
  3. Минимальна сумма искажений квадратов расстояний между всеми точками данных и их «центром тяжести».

Визуализация данных является одним из наиболее широко используемых приложений метода главных компонент и его нелинейных обобщений .

Компрессия изображений и видео

Для уменьшения пространственной избыточности пикселей при кодировании изображений и видео используется линейные преобразования блоков пикселей. Последующие квантования полученных коэффициентов и кодирование без потерь позволяют получить значительные коэффициенты сжатия. Использование преобразования PCA в качестве линейного преобразования является для некоторых типов данных оптимальным с точки зрения размера полученных данных при одинаковом искажении . На данный момент этот метод активно не используется, в основном из-за большой вычислительной сложности. Также сжатия данных можно достичь отбрасывая последние коэффициенты преобразования.

Подавление шума на изображениях

Хемометрика

Метод главных компонент - один из основных методов в хемометрике (англ. Chemometrics ). Позволяет разделить матрицу исходных данных X на две части: «содержательную» и «шум». По наиболее популярному определению «Хемометрика - это химическая дисциплина, применяющая математические, статистические и другие методы, основанные на формальной логике, для построения или отбора оптимальных методов измерения и планов эксперимента, а также для извлечения наиболее важной информации при анализе экспериментальных данных».

Психодиагностика

  1. анализ данных (описание результатов опросов или других исследований, представленных в виде массивов числовых данных);
  2. описание социальных явлений (построение моделей явлений, в том числе и математических моделей).

В политологии метод главных компонент был основным инструментом проекта «Политический Атлас Современности» для линейного и нелинейного анализа рейтингов 192 стран мира по пяти специально разработанным интегральным индексам (уровня жизни, международного влияния, угроз, государственности и демократии). Для картографии результатов этого анализа разработана специальная ГИС (Геоинформационная система), объединяющая географическое пространство с пространством признаков. Также созданы карты данных политического атласа , использующие в качестве подложки двумерные главные многообразия в пятимерном пространстве стран. Отличие карты данных от географической карты заключается в том, что на географической карте рядом оказываются объекты, которые имеют сходные географические координаты, в то время как на карте данных рядом оказываются объекты (страны) с похожими признаками (индексами).

Метод главных компонент или компонентный анализ (principal component analysis, PCA) - один из важнейших методов в арсенале зоолога или эколога. К сожалению, в тех случаях, когда вполне уместным является применение компонентного анализа, сплошь и рядом применяют кластерный анализ.

Типичная задача, для которой полезен компонентный анализ, такова: есть некое множество объектов, каждый из которых охарактеризован по определенному (достаточно большому) количеству признаков. Исследователя интересуют закономерности, отраженные в разнообразии этих объектов. В том случае, когда есть основания предполагать, что объекты распределены по иерархически соподчиненным группам, можно использовать кластерный анализ - метод классификации (распределения по группам). Если нет оснований ожидать, что в разнообразии объектов отражена какая-то иерархия, логично использовать ординацию (упорядоченное расположение). Если каждый объект охарактеризован по достаточно большому количеству признаков (по крайней мере - такому количеству признаков, какое не получается адекватно отразить на одном графике), оптимально начинать исследование данных с анализа главных компонент. Дело в том, что этот метод является одновременно методом понижения размерности (количества измерений) данных.

Если группа рассматриваемых объектов охарактеризована значениями одного признака, для характеристики их разнообразия можно использовать гистограмму (для непрерывных признаков) или столбчатую диаграмму (для характеристики частот дискретного признака). Если объекты охарактеризованы двумя признаками, можно использовать двумерный график рассеяния, если тремя - трехмерный. А если признаков много? Можно попытаться на двумерном графике отразить взаимное расположение объектов друг относительно друга в многомерном пространстве. Обычно такое понижение размерности связано с потерей информации. Из разных возможных способов такого отображения надо выбрать тот, при котором потеря информации будет минимальной.

Поясним сказанное на самом простом примере: переходе от двумерного пространства к одномерному. Минимальное количество точек, которое задает двумерное пространство (плоскость) - 3. На рис. 9.1.1 показано расположение трех точек на плоскости. Координаты этих точек легко читаются по самому рисунку. Как выбрать прямую, которая будет нести максимальную информацию о взаиморасположении точек?

Рис. 9.1.1. Три точки на плоскости, заданной двумя признаками. На какую прямую будет проецироваться максимальная дисперсия этих точек?

Рассмотрим проекции точек на прямую A (показанную синим цветом). Координаты проекций этих точек на прямую A таковы: 2, 8, 10. Среднее значение - 6 2 / 3 . Дисперсия (2-6 2 / 3)+ (8-6 2 / 3)+ (10-6 2 / 3)=34 2 / 3 .

Теперь рассмотрим прямую B (показанную зеленым цветом). Координаты точек - 2, 3, 7; среднее значение - 4, дисперсия - 14. Таким образом, на прямую B отражается меньшая доля дисперсии, чем на прямую A.

Какова эта доля? Поскольку прямые A и B ортогональны (перпендикулярны), доли общей дисперсии, проецирующиеся на A и B, не пересекаются. Значит, общую дисперсию расположения интересующих нас точек можно вычислить как сумму этих двух слагаемых: 34 2 / 3 +14=48 2 / 3 . При этом на прямую A проецируется 71,2% общей дисперсии, а на прямую B - 28,8%.

А как определить, на какую прямую отразится максимальная доля дисперсии? Эта прямая будет соответствовать линии регрессии для интересующих нас точек, которая обозначена как C (красный цвет). На эту прямую отразится 77,2% общей дисперсии, и это - максимально возможное значение при данном расположении точек. Такую прямую, на которую проецируется максимальная доля общей дисперсии, называют первой главной компонентой .

А на какую прямую отразить оставшиеся 22,8% общей дисперсии? На прямую, перпендикулярную первой главной компоненте. Эта прямая тоже будет являться главной компонентой, ведь на нее отразится максимально возможная доля дисперсии (естественно, без учета той, которая отразилась на первую главную компоненту). Таким образом, это - вторая главная компонента .

Вычислив эти главные компоненты с помощью Statistica (диалог мы опишем чуть позже), мы получим картину, показанную на рис. 9.1.2. Координаты точек на главных компонентах показываются в стандартных отклонениях.


Рис. 9.1.2. Расположение трех точек, показанных на рис. 9.1.1, на плоскости двух главных компонент. Почему эти точки располагаются друг относительно друга иначе, чем на рис. 9.1.1?

На рис. 9.1.2 взаиморасположение точек оказывается измененным. Чтобы в дальнейшем правильно интерпретировать подобные картинки, следует рассмотреть причины отличий в расположении точек на рис. 9.1.1 и 9.1.2 подробнее. Точка 1 в обоих случаях находится правее (имеет большую координату по первому признаку и первой главной компоненте), чем точка 2. Но, почему-то, точка 3 на исходном расположении находится ниже двух других точек (имеет наименьшее значение признака 2), и выше двух других точек на плоскости главных компонент (имеет большую координату по второй компоненте). Это связано с тем, что метод главных компонент оптимизирует именно дисперсию исходных данных, проецирующихся на выбираемые им оси. Если главная компонента коррелирована с какой-то исходной осью, компонента и ось могут быть направлены в одну сторону (иметь положительную корреляцию) или в противоположные стороны (иметь отрицательные корреляции). Оба эти варианта равнозначны. Алгоритм метода главных компонент может «перевернуть» или не «перевернуть» любую плоскость; никаких выводов на основании этого делать не следует.

Однако точки на рис. 9.1.2 не просто «перевернуты» по сравнению с их взаиморасположением на рис. 9.1.1; определенным образом изменилось и их взаиморасположения. Отличия между точками по второй главной компоненте кажутся усиленными. 22,76% общей дисперсии, приходящиеся на вторую компоненту, «раздвинули» точки на такую же дистанцию, как и 77,24% дисперсии, приходящихся на первую главную компоненту.

Чтобы расположение точек на плоскости главных компонент соответствовало их действительному расположению, эту плоскость следовало бы исказить. На рис. 9.1.3. показаны два концентрических круга; их радиусы соотносятся как доли дисперсий, отражаемых первой и второй главными компонентами. Картинка, соответствующая рис. 9.1.2, искажена так, чтобы среднеквадратичное отклонение по первой главной компоненте соответствовало большему кругу, а по второй - меньшему.


Рис. 9.1.3. Мы учли, что на первую главную компоненту приходится бо льшая доля дисперсии, чем на вторую. Для этого мы исказили рис. 9.1.2, подогнав его под два концентрических круга, радиусы которых соотносятся, как доли дисперсий, приходящихся на главные компоненты. Но расположение точек все равно не соответствует исходному, показанному на рис. 9.1.1!

А почему взаимное расположение точек на рис. 9.1.3 не соответствует таковому на рис. 9.1.1? На исходном рисунке, рис. 9.1 точки расположены в соответствии со своими координатами, а не в соответствии с долями дисперсии, приходящимися на каждую ось. Расстоянию в 1 единицу по первому признаку (по оси абсцисс) на рис. 9.1.1 приходятся меньшая доля дисперсии точек по этой оси, чем расстоянию в 1 единицу по второму признаку (по оси ординат). А на рис 9.1.1 расстояния между точками определяются именно теми единицами, в которых измеряются признаки, по которым они описаны.

Несколько усложним задачу. В табл. 9.1.1 показаны координаты 10 точек в 10-мерном пространстве. Первые три точки и первые два измерения - это тот пример, который мы только что рассматривали.

Таблица 9.1.1. Координаты точек для дальнейшего анализа

Координаты

В учебных целях вначале рассмотрим только часть данных из табл. 9.1.1. На рис. 9.1.4 мы видим положение десяти точек на плоскости первых двух признаков. Обратите внимание, что первая главная компонента (прямая C) прошла несколько иначе, чем в предыдущем случае. Ничего удивительного: на ее положение влияют все рассматриваемые точки.


Рис. 9.1.4. Мы увеличили количество точек. Первая главная компонента проходит уже несколько иначе, ведь на нее оказали влияние добавленные точки

На рис. 9.1.5 показано положение рассмотренных нами 10 точек на плоскости двух первых компонент. Обратите внимание: все изменилось, не только доля дисперсии, приходящейся на каждую главную компоненту, но даже положение первых трех точек!


Рис. 9.1.5. Ординация в плоскости первых главных компонент 10 точек, охарактеризованных в табл. 9.1.1. Рассматривались только значения двух первых признаков, последние 8 столбцов табл. 9.1.1 не использовались

В общем, это естественно: раз главные компоненты расположены иначе, то изменилось и взаиморасположение точек.

Трудности в сопоставлении расположения точек на плоскости главных компонент и на исходной плоскости значений их признаков могут вызвать недоумение: зачем использовать такой трудноинтерпретируемый метод? Ответ прост. В том случае, если сравниваемые объекты описаны всего по двум признакам, вполне можно использовать их ординацию по этим, исходным признакам. Все преимущества метода главных компонент проявляются в случае многомерных данных. Метод главных компонент в таком случае оказывается эффективным способом снижения размерности данных.

9.2. Переход к начальным данным с большим количеством измерений

Рассмотрим более сложный случай: проанализируем данные, представленные в табл. 9.1.1 по всем десяти признакам. На рис. 9.2.1 показано, как вызывается окно интересующего нас метода.


Рис. 9.2.1. Запуск метода главных компонент

Нас будет интересовать только выбор признаков для анализа, хотя диалог Statistica позмоляет намного более тонкую настройку (рис. 9.2.2).


Рис. 9.2.2. Выбор переменных для анализа

После выполнения анализа появляется окно его результатов с несколькими вкладками (рис. 9.2.3). Все основные окна доступны уже из первой вкладки.


Рис. 9.2.3. Первая вкладка диалога результатов анализа главных компонент

Можно увидеть, что анализ выделил 9 главных компонент, причем описал с их помощью 100% дисперсии, отраженной в 10 начальных признаках. Это означает, что один признак был лишним, избыточным.

Начнем просматривать результаты с кнопки «Plot case factor voordinates, 2D»: она покажет расположение точек на плоскости, заданной двумя главными компонентами. Нажав эту кнопку, мы попадем в диалог, где надо будет указать, какие мы будем использовать компоненты; естественно начинать анализ с первой и второй компонент. Результат - на рис. 9.2.4.


Рис. 9.2.4. Ординация рассматриваемых объектов на плоскости двух первых главных компонент

Положение точек изменилось, и это естественно: в анализ вовлечены новые признаки. На рис. 9.2.4 отражено более 65% всего разнообразия в положении точек друг относительно друга, и это уже нетривиальный результат. К примеру, вернувшись к табл. 9.1.1, можно убедиться в том, что точки 4 и 7, а также 8 и 10 действительно достаточно близки друг к другу. Впрочем, отличия между ними могут касаться других главных компонент, не показанных на рисунке: на них, все-таки, тоже приходится треть оставшейся изменчивости.

Кстати, при анализе размещения точек на плоскости главных компонент может возникнуть необходимость проанализировать расстояния между ними. Проще всего получить матрицу дистанций между точками с использованием модуля для кластерного анализа.

А как выделенные главные компоненты связаны с исходными признаками? Это можно узнать, нажав кнопку (рис. 9.2.3) Plot var. factor coordinates, 2D. Результат - на рис. 9.2.5.


Рис. 9.2.5. Проекции исходных признаков на плоскость двух первых главных компонент

Мы смотрим на плоскость двух главных компонент «сверху». Исходные признаки, которые никак не связаны с главными компонентами, будет перпендикулярны (или почти перпендикулярны) им и отразятся короткими отрезками, заканчивающимися вблизи начала координат. Так, меньше всего с двумя первыми главными компонентами связан признак № 6 (хотя он демонстрирует определенную положительную корреляцию с первой компонентой). Отрезки, соответствующие тем признакам, которые полностью отразятся на плоскости главных компонент, будут заканчиваться на охватывающей центр рисунка окружности единичного радиуса.

Например, можно увидеть, что на первую главную компоненту сильнее всего повлияли признаки 10 (связан положительной корреляцией), а также 7 и 8 (связаны отрицательной корреляцией). Чтобы рассмотреть структуру таких корреляций подробнее, можно нажать кнопку Factor coordinates of variables, и получить таблицу, показанную на рис. 9.2.6.


Рис. 9.2.6. Корреляции между исходными признаками и выделенными главными компонентами (Factors)

Кнопка Eigenvalues выводит величины, которые называются собственными значениями главных компонент . В верхней части окна, показанного на рис. 9.2.3, выведены такие значения для нескольких первых компонент; кнопка Scree plot показывает их в удобной для восприятия форме (рис. 9.2.7).


Рис. 9.2.7. Собственные значения выделенных главных компонент и доли отраженной ими общей дисперсии

Для начала надо понять, что именно показывает значение eigenvalue. Это - мера дисперсии, отразившейся на главную компоненту, измеренная в количестве дисперсии, приходившейся на каждый признак в начальных данных. Если eigenvalue первой главной компоненты равен 3,4, это означает, что на нее отражается больше дисперсии, чем на три признака из начального набора. Собственные величины линейно связаны с долей дисперсии, приходящейся на главную компоненту, единое что, сумма собственных значений равна количеству исходных признаков, а сумма долей дисперсии равна 100%.

А что означает, что информацию об изменчивости по 10 признакам удалось отразить в 9 главных компонентах? Что один из начальных признаков был избыточным, не добавлял никакой новой информации. Так и было; на рис. 9.2.8 показано, как был сгенерирован набор точек, отраженный в табл. 9.1.1.

В этой статье я бы хотел рассказать о том, как именно работает метод анализа главных компонент (PCA – principal component analysis) с точки зрения интуиции, стоящей за ее математическим аппаратом. Максимально просто, но подробно.

Математика вообще очень красивая и изящная наука, но порой ее красота скрывается за кучей слоев абстракции. Показать эту красоту лучше всего на простых примерах, которые, так сказать, можно покрутить, поиграть и пощупать, потому что в конце концов все оказывается гораздо проще, чем кажется на первый взгляд – самое главное понять и представить.

В анализе данных, как и в любом другом анализе, порой бывает нелишним создать упрощенную модель, максимально точно описывающую реальное положение дел. Часто бывает так, что признаки довольно сильно зависят друг от друга и их одновременное наличие избыточно.

К примеру, расход топлива у нас меряется в литрах на 100 км, а в США в милях на галлон. На первый взгляд, величиные разные, но на самом деле они строго зависят друг от друга. В миле 1600км, а в галлоне 3.8л. Один признак строго зависит от другого, зная один, знаем и другой.

Но гораздо чаще бывает так, что признаки зависят друг от друга не так строго и (что важно!) не так явно. Объем двигателя в целом положительно влияет на разгон до 100 км/ч, но это верно не всегда. А еще может оказаться, что с учетом не видимых на первый взгляд факторов (типа улучшения качества топлива, использования более легких материалов и прочих современных достижений), год автомобиля не сильно, но тоже влияет на его разгон.

Зная зависимости и их силу, мы можем выразить несколько признаков через один, слить воедино, так сказать, и работать уже с более простой моделью. Конечно, избежать потерь информации, скорее всего не удастся, но минимизировать ее нам поможет как раз метод PCA.

Выражаясь более строго, данный метод аппроксимирует n-размерное облако наблюдений до эллипсоида (тоже n-мерного), полуоси которого и будут являться будущими главными компонентами. И при проекции на такие оси (снижении размерности) сохраняется наибольшее количество информации.

Шаг 1. Подготовка данных

Здесь для простоты примера я не буду брать реальные обучающие датасеты на десятки признаков и сотни наблюдений, а сделаю свой, максимально простой игрушечный пример. 2 признака и 10 наблюдений будет вполне достаточно для описания того, что, а главное – зачем, происходит в недрах алгоритма.

Сгенерируем выборку:

X = np.arange(1,11) y = 2 * x + np.random.randn(10)*2 X = np.vstack((x,y)) print X OUT: [[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. ] [ 2.73446908 4.35122722 7.21132988 11.24872601 9.58103444 12.09865079 13.78706794 13.85301221 15.29003911 18.0998018 ]]

В данной выборке у нас имеются два признака, сильно коррелирующие друг с другом. С помощью алгоритма PCA мы сможем легко найти признак-комбинацию и, ценой части информации, выразить оба этих признака одним новым. Итак, давайте разбираться!

Для начала немного статистики. Вспомним, что для описания случайной величины используются моменты. Нужные нам – мат. ожидание и дисперсия. Можно сказать, что мат. ожидание – это «центр тяжести» величины, а дисперсия – это ее «размеры». Грубо говоря, мат. ожидание задает положение случайной величины, а дисперсия – ее размер.

Сам процесс проецирования на вектор никак не влияет на значения средних, так как для минимизации потерь информации наш вектор должен проходить через центр нашей выборки. Поэтому нет ничего страшного, если мы отцентрируем нашу выборку – линейно сдвинем ее так, чтобы средние значения признаков были равны 0. Это очень сильно упростит наши дальнейшие вычисления (хотя, стоит отметить, что можно обойтись и без центрирования).
Оператор, обратный сдвигу будет равен вектору изначальных средних значений – он понадобится для восстановления выборки в исходной размерности.

Xcentered = (X - x.mean(), X - y.mean()) m = (x.mean(), y.mean()) print Xcentered print "Mean vector: ", m OUT: (array([-4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5]), array([-8.44644233, -8.32845585, -4.93314426, -2.56723136, 1.01013247, 0.58413394, 1.86599939, 7.00558491, 4.21440647, 9.59501658])) Mean vector: (5.5, 10.314393916)

Дисперсия же сильно зависит от порядков значений случайной величины, т.е. чувствительна к масштабированию. Поэтому если единицы измерения признаков сильно различаются своими порядками, крайне рекомендуется стандартизировать их. В нашем случае значения не сильно разнятся в порядках, так что для простоты примера мы не будем выполнять эту операцию.

Шаг 2. Ковариационная матрица

В случае с многомерной случайной величиной (случайным вектором) положение центра все так же будет являться мат. ожиданиями ее проекций на оси. А вот для описания ее формы уже недостаточно толькое ее дисперсий по осям. Посмотрите на эти графики, у всех трех случайных величин одинаковые мат.ожидания и дисперсии, а их проекции на оси в целом окажутся одинаковы!


Для описания формы случайного вектора необходима ковариационная матрица.

Это матрица, у которой (i,j) -элемент является корреляцией признаков (X i , X j). Вспомним формулу ковариации:

В нашем случае она упрощается, так как E(X i) = E(X j) = 0:

Заметим, что когда X i = X j:

и это справедливо для любых случайных величин.

Таким образом, в нашей матрице по диагонали будут дисперсии признаков (т.к. i = j), а в остальных ячейках – ковариации соответствующих пар признаков. А в силу симметричности ковариации матрица тоже будет симметрична.

Замечание: Ковариационная матрица является обобщением дисперсии на случай многомерных случайных величин – она так же описывает форму (разброс) случайной величины, как и дисперсия.

И действительно, дисперсия одномерной случайной величины – это ковариационная матрица размера 1x1, в которой ее единственный член задан формулой Cov(X,X) = Var(X).

Итак, сформируем ковариационную матрицу Σ для нашей выборки. Для этого посчитаем дисперсии X i и X j , а также их ковариацию. Можно воспользоваться вышенаписанной формулой, но раз уж мы вооружились Python’ом, то грех не воспользоваться функцией numpy.cov(X) . Она принимает на вход список всех признаков случайной величины и возвращает ее ковариационную матрицу и где X – n-мерный случайный вектор (n-количество строк). Функция отлично подходит и для расчета несмещенной дисперсии, и для ковариации двух величин, и для составления ковариационной матрицы.
(Напомню, что в Python матрица представляется массивом-столбцом массивов-строк.)

Covmat = np.cov(Xcentered) print covmat, "n" print "Variance of X: ", np.cov(Xcentered) print "Variance of Y: ", np.cov(Xcentered) print "Covariance X and Y: ", np.cov(Xcentered) OUT: [[ 9.16666667 17.93002811] [ 17.93002811 37.26438587]] Variance of X: 9.16666666667 Variance of Y: 37.2643858743 Covariance X and Y: 17.9300281124

Шаг 3. Собственные вектора и значения (айгенпары)

О"кей, мы получили матрицу, описывающую форму нашей случайной величины, из которой мы можем получить ее размеры по x и y (т.е. X 1 и X 2), а также примерную форму на плоскости. Теперь надо надо найти такой вектор (в нашем случае только один), при котором максимизировался бы размер (дисперсия) проекции нашей выборки на него.

Замечание: Обобщение дисперсии на высшие размерности - ковариационная матрица, и эти два понятия эквивалентны. При проекции на вектор максимизируется дисперсия проекции, при проекции на пространства больших порядков – вся ее ковариационная матрица.

Итак, возьмем единичный вектор на который будем проецировать наш случайный вектор X. Тогда проекция на него будет равна v T X. Дисперсия проекции на вектор будет соответственно равна Var(v T X). В общем виде в векторной форме (для центрированных величин) дисперсия выражается так:

Соответственно, дисперсия проекции:

Легко заметить, что дисперсия максимизируется при максимальном значении v T Σv. Здесь нам поможет отношение Рэлея. Не вдаваясь слишком глубоко в математику, просто скажу, что у отношения Рэлея есть специальный случай для ковариационных матриц:

Последняя формула должна быть знакома по теме разложения матрицы на собственные вектора и значения. x является собственным вектором, а λ – собственным значением. Количество собственных векторов и значений равны размеру матрицы (и значения могут повторяться).

Кстати, в английском языке собственные значения и векторы именуются eigenvalues и eigenvectors соответственно.
Мне кажется, это звучит намного более красиво (и кратко), чем наши термины.

Таким образом, направление максимальной дисперсии у проекции всегда совпадает с айгенвектором имеющим максимальное собственное значение, равное величине этой дисперсии .

И это справедливо также для проекций на большее количество измерений – дисперсия (ковариационная матрица) проекции на m-мерное пространство будет максимальна в направлении m айгенвекторов, имеющих максимальные собственные значения.

Размерность нашей выборки равна двум и количество айгенвекторов у нее, соответственно, 2. Найдем их.

В библиотеке numpy реализована функция numpy.linalg.eig(X) , где X – квадратная матрица. Она возвращает 2 массива – массив айгензначений и массив айгенвекторов (векторы-столбцы). И векторы нормированы - их длина равна 1. Как раз то, что надо. Эти 2 вектора задают новый базис для выборки, такой что его оси совпадают с полуосями аппроксимирующего эллипса нашей выборки.



На этом графике мы апроксимировали нашу выборку эллипсом с радиусами в 2 сигмы (т.е. он должен содержать в себе 95% всех наблюдений – что в принципе мы здесь и наблюдаем). Я инвертировал больший вектор (функция eig(X) направляла его в обратную сторону) – нам важно направление, а не ориентация вектора.

Шаг 4. Снижение размерности (проекция)

Наибольший вектор имеет направление, схожее с линией регрессии и спроецировав на него нашу выборку мы потеряем информацию, сравнимую с суммой остаточных членов регрессии (только расстояние теперь евклидово, а не дельта по Y). В нашем случае зависимость между признаками очень сильная, так что потеря информации будет минимальна. «Цена» проекции - дисперсия по меньшему айгенвектору - как видно из предыдущего графика, очень невелика.

Замечание: диагональные элементы ковариационной матрицы показывают дисперсии по изначальному базису, а ее собственные значения – по новому (по главным компонентам).

Часто требуется оценить объем потерянной (и сохраненной) информации. Удобнее всего представить в процентах. Мы берем дисперсии по каждой из осей и делим на общую сумму дисперсий по осям (т.е. сумму всех собственных чисел ковариационной матрицы).
Таким образом, наш больший вектор описывает 45.994 / 46.431 * 100% = 99.06%, а меньший, соответственно, примерно 0.94%. Отбросив меньший вектор и спроецировав данные на больший, мы потеряем меньше 1% информации! Отличный результат!

Замечание: На практике, в большинстве случаев, если суммарная потеря информации составляет не более 10-20%, то можно спокойно снижать размерность.

Для проведения проекции, как уже упоминалось ранее на шаге 3, надо провести операцию v T X (вектор должен быть длины 1). Или, если у нас не один вектор, а гиперплоскость, то вместо вектора v T берем матрицу базисных векторов V T . Полученный вектор (или матрица) будет являться массивом проекций наших наблюдений.

V = (-vecs, -vecs) Xnew = dot(v,Xcentered) print Xnew OUT: [ -9.56404107 -9.02021624 -5.52974822 -2.96481262 0.68933859 0.74406645 2.33433492 7.39307974 5.3212742 10.59672425]

dot(X,Y) - почленное произведение (так мы перемножаем векторы и матрицы в Python)

Нетрудно заметить, что значения проекций соответствуют картине на предыдущем графике.

Шаг 5. Восстановление данных

С проекцией удобно работать, строить на ее основе гипотезы и разрабатывать модели. Но не всегда полученные главные компоненты будут иметь явный, понятный постороннему человеку, смысл. Иногда полезно раскодировать, к примеру, обнаруженные выбросы, чтобы посмотреть, что за наблюдения за ними стоят.

Это очень просто. У нас есть вся необходимая информация, а именно координаты базисных векторов в исходном базисе (векторы, на которые мы проецировали) и вектор средних (для отмены центровки). Возьмем, к примеру, наибольшее значение: 10.596… и раскодируем его. Для этого умножим его справа на транспонированный вектор и прибавим вектор средних, или в общем виде для всей выбоки: X T v T +m

Xrestored = dot(Xnew,v) + m print "Restored: ", Xrestored print "Original: ", X[:,9] OUT: Restored: [ 10.13864361 19.84190935] Original: [ 10. 19.9094105]

Разница небольшая, но она есть. Ведь потерянная информация не восстанавливается. Тем не менее, если простота важнее точности, восстановленное значение отлично аппроксимирует исходное.

Вместо заключения – проверка алгоритма

Итак, мы разобрали алгоритм, показали как он работает на игрушечном примере, теперь осталось только сравнить его с PCA, реализованным в sklearn – ведь пользоваться будем именно им.

From sklearn.decomposition import PCA pca = PCA(n_components = 1) XPCAreduced = pca.fit_transform(transpose(X))

Параметр n_components указывает на количество измерений, на которые будет производиться проекция, то есть до скольки измерений мы хотим снизить наш датасет. Другими словами – это n айгенвекторов с самыми большими собственными числами. Проверим результат снижения размерности:

Print "Our reduced X: n", Xnew print "Sklearn reduced X: n", XPCAreduced OUT: Our reduced X: [ -9.56404106 -9.02021625 -5.52974822 -2.96481262 0.68933859 0.74406645 2.33433492 7.39307974 5.3212742 10.59672425] Sklearn reduced X: [[ -9.56404106] [ -9.02021625] [ -5.52974822] [ -2.96481262] [ 0.68933859] [ 0.74406645] [ 2.33433492] [ 7.39307974] [ 5.3212742 ] [ 10.59672425]]

Мы возвращали результат как матрицу вектор-столбцов наблюдений (это более канонический вид с точки зрения линейной алгебры), PCA в sklearn же возвращает вертикальный массив.

В принципе, это не критично, просто стоит отметить, что в линейной алгебре канонично записывать матрицы через вектор-столбцы, а в анализе данных (и прочих связанных с БД областях) наблюдения (транзакции, записи) обычно записываются строками.

Проверим и прочие параметры модели – функция имеет ряд атрибутов, позволяющих получить доступ к промежуточным переменным:

Вектор средних: mean_
- Вектор(матрица) проекции: components_
- Дисперсии осей проекции (выборочная): explained_variance_
- Доля информации (доля от общей дисперсии): explained_variance_ratio_

Замечание: explained_variance_ показывает выборочную дисперсию, тогда как функция cov() для построения ковариационной матрицы рассчитывает несмещенные дисперсии!

Сравним полученные нами значения со значениями библиотечной функции.

Print "Mean vector: ", pca.mean_, m print "Projection: ", pca.components_, v print "Explained variance ratio: ", pca.explained_variance_ratio_, l/sum(l) OUT: Mean vector: [ 5.5 10.31439392] (5.5, 10.314393916) Projection: [[ 0.43774316 0.89910006]] (0.43774316434772387, 0.89910006232167594) Explained variance: [ 41.39455058] 45.9939450918 Explained variance ratio: [ 0.99058588] 0.990585881238

Единственное различие – в дисперсиях, но как уже упоминалось, мы использовали функцию cov(), которая использует несмещенную дисперсию, тогда как атрибут explained_variance_ возвращает выборочную. Они отличаются только тем, что первая для получения мат.ожидания делит на (n-1), а вторая – на n. Легко проверить, что 45.99 ∙ (10 - 1) / 10 = 41.39.

Все остальные значения совпадают, что означает, что наши алгоритмы эквивалентны. И напоследок замечу, что атрибуты библиотечного алгоритма имеют меньшую точность, поскольку он наверняка оптимизирован под быстродействие, либо просто для удобства округляет значения (либо у меня какие-то глюки).

Замечание: библиотечный метод автоматически проецирует на оси, максимизирующие дисперсию. Это не всегда рационально. К примеру, на данном рисунке неаккуратное снижение размерности приведет к тому, что классификация станет невозможна. Тем не менее, проекция на меньший вектор успешно снизит размерность и сохранит классификатор.

Итак, мы рассмотрели принципы работы алгоритма PCA и его реализации в sklearn. Я надеюсь, эта статья была достаточно понятна тем, кто только начинает знакомство с анализом данных, а также хоть немного информативна для тех, кто хорошо знает данный алгоритм. Интуитивное представление крайне полезно для понимания того как работает метод, а понимание очень важно для правильной настройки выбранной модели. Спасибо за внимание!

P.S.: Просьба не ругать автора за возможные неточности. Автор сам в процессе знакомства с дата-анализом и хочет помочь таким же как он в процессе освоения этой удивительной области знаний! Но конструктивная критика и разнообразный опыт всячески приветствуются!

Метод главных компонент (PCA - Principal component analysis) - один из основных способов уменьшить размерность данных при наименьшей потере сведений. Изобретенный в 1901 г. Карлом Пирсоном он широко применяется во многих областях. Например, для сжатия данных, «компьютерного зрения», распознавания видимых образов и т.д. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Метод главных компонент часто называют преобразованием Кархунена-Лёве (Karhunen-Loeve transform) или преобразованием Хотеллинга (Hotelling transform). Также над этим вопросом работали математики Косамби (1943 г.), Пугачёв (1953 г.) и Обухова (1954 г.).

Задача анализа главных компонент имеет своей целью аппроксимировать (приблизить) данные линейными многообразиями меньшей размерности; найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (то есть среднеквадратичное отклонение от среднего значения) максимален; найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально. В этом случае оперируют конечными множествами данных. Они эквивалентны и не используют никакой гипотезы о статистическом порождении данных.

Кроме того задачей анализа главных компонент может быть цель построить для данной многомерной случайной величины такое ортогональное преобразование координат, что в результате корреляции между отдельными координатами обратятся в ноль. Эта версия оперирует случайными величинами.

Рис.3

На приведённом выше рисунке даны точки P i на плоскости, p i - расстояние от P i до прямой AB. Ищется прямая AB, минимизирующая сумму

Метод главных компонент начинался с задачи наилучшей аппроксимации (приближения) конечного множества точек прямыми и плоскостями. Например, дано конечное множество векторов. Для каждого k = 0,1,...,n ? 1 среди всех k-мерных линейных многообразий в найти такое, что сумма квадратов уклонений x i от L k минимальна:

где? евклидово расстояние от точки до линейного многообразия.

Всякое k-мерное линейное многообразие в может быть задано как множество линейных комбинаций, где параметры в i пробегают вещественную прямую, а? ортонормированный набор векторов

где евклидова норма, ? евклидово скалярное произведение, или в координатной форме:

Решение задачи аппроксимации для k = 0,1,...,n ? 1 даётся набором вложенных линейных многообразий

Эти линейные многообразия определяются ортонормированным набором векторов (векторами главных компонент) и вектором a 0 . Вектор a 0 ищется, как решение задачи минимизации для L 0:

В итоге получается выборочное среднее:

Французский математик Морис Фреше Фреше Морис Рене (Frйchet Maurice Renй) (02.09.1878 г. - 04.06.1973 г.) - выдающийся французский математик. Трудился в области топологии и функционального анализа, теории вероятностей. Автор современных понятий о метрическом пространстве, компактности и полноте. Авт. в 1948 году обратил внимание, что вариационное определение среднего, как точки, минимизирующей сумму квадратов расстояний до точек данных, очень удобно для построения статистики в произвольном метрическом пространстве, и построил обобщение классической статистики для общих пространств, получившее название обобщённого метода наименьших квадратов.

Векторы главных компонент могут быть найдены как решения однотипных задач оптимизации:

1) централизуем данные (вычитаем среднее):

2) находим первую главную компоненту как решение задачи;

3) Вычитаем из данных проекцию на первую главную компоненту:

4) находим вторую главную компоненту как решение задачи

Если решение не единственно, то выбираем одно из них.

2k-1) Вычитаем проекцию на (k ? 1)-ю главную компоненту (напомним, что проекции на предшествующие (k ? 2) главные компоненты уже вычтены):

2k) находим k-ю главную компоненту как решение задачи:

Если решение не единственно, то выбираем одно из них.

Рис. 4

Первая главная компонента максимизирует выборочную дисперсию проекции данных.

Например, пусть нам дан центрированный набор векторов данных, где среднее арифметическое значение x i равно нулю. Задача? найти такое отртогональное преобразование в новую систему координат, для которого были бы верны следующие условия:

1. Выборочная дисперсия данных вдоль первой координаты (главной компоненты) максимальна;

2. Выборочная дисперсия данных вдоль второй координаты (вторая главная компоненты) максимальна при условии ортогональности первой координате;

3. Выборочная дисперсия данных вдоль значений k-ой координаты максимальна при условии ортогональности первым k ? 1 координатам;

Выборочная дисперсия данных вдоль направления, заданного нормированным вектором a k , это

(поскольку данные центрированы, выборочная дисперсия здесь совпадает со средним квадратом уклонения от нуля).

Решение задачи о наилучшей аппроксимации даёт то же множество главных компонент, что и поиск ортогональных проекций с наибольшим рассеянием, по очень простой причине:

и первое слагаемое не зависит от a k .

Матрица преобразования данных к главным компонентам строится из векторов «A» главных компонент:

Здесь a i -- ортонормированные векторы-столбцы главных компонент, расположенные в порядке убывания собственных значений, верхний индекс T означает транспонирование. Матрица A является ортогональной: AA T = 1.

После преобразования большая часть вариации данных будет сосредоточена в первых координатах, что даёт возможность отбросить оставшиеся и рассмотреть пространство уменьшенной размерности.

Самым старым методом отбора главных компонент является правило Кайзера , Кайзер Иоганн Генрих Густав (Kaiser Johann Henrich Gustav, 16.03.1853 г., г.Брезно, Пруссия - 14.10.1940 г., Германия) - выдающийся немецкий математик, физик, исследователь в области спектрального анализа. Авт. по которому значимы те главные компоненты, для которых

то есть л i превосходит среднее значение л (среднюю выборочную дисперсию координат вектора данных). Правило Кайзера хорошо работает в простых случаях, когда есть несколько главных компонент с л i , намного превосходящими среднее значение, а остальные собственные числа меньше него. В более сложных случаях оно может давать слишком много значимых главных компонент. Если данные нормированы на единичную выборочную дисперсию по осям, то правило Кайзера приобретает особо простой вид: значимы только те главные компоненты, для которых л i > 1.

Одним из наиболее популярных эвристических подходов к оценке числа необходимых главных компонент является правило сломанной трости , когда набор нормированных на единичную сумму собственных чисел (, i = 1,...n) сравнивается с распределением длин обломков трости единичной длины, сломанной в n ? 1-й случайно выбранной точке (точки разлома выбираются независимо и равнораспределены по длине трости). Если L i (i = 1,...n) - длины полученных кусков трости, занумерованные в порядке убывания длины: , тогда математическое ожидание L i:

Разберём пример, заключающийся в оценке числа главных компонент по правилу сломанной трости в размерности 5.

Рис. 5.

По правилу сломанной трости k-й собственный вектор (в порядке убывания собственных чисел л i) сохраняется в списке главных компонент, если

На рисунке выше приведён пример для 5-мерного случая:

l 1 =(1+1/2+1/3+1/4+1/5)/5; l 2 =(1/2+1/3+1/4+1/5)/5; l 3 =(1/3+1/4+1/5)/5;

l 4 =(1/4+1/5)/5; l 5 =(1/5)/5.

Для примера выбрано

0.5; =0.3; =0.1; =0.06; =0.04.

По правилу сломанной трости в этом примере следует оставлять 2 главных компоненты:

Следует только иметь в ввиду, что правило сломанной трости имеет тенденцию занижать количество значимых главных компонент.

После проецирования на первые k главных компонент с удобно произвести нормировку на единичную (выборочную) дисперсию по осям. Дисперсия вдоль iй главной компоненты равна), поэтому для нормировки надо разделить соответствующую координату на. Это преобразование не является ортогональным и не сохраняет скалярного произведения. Ковариационная матрица проекции данных после нормировки становится единичной, проекции на любые два ортогональных направления становятся независимыми величинами, а любой ортонормированный базис становится базисом главных компонент (напомним, что нормировка меняет отношение ортогональности векторов). Отображение из пространства исходных данных на первые k главных компонент вместе с нормировкой задается матрицей

Именно это преобразование чаще всего называется преобразованием Кархунена-Лоэва, то есть собственно методом главных компонент. Здесь a i -- векторы-столбцы, а верхний индекс T означает транспонирование.

В статистике при использовании метода главных компонент используют несколько специальных терминов.

Матрица данных , где каждая строка - вектор предобработанных данных (центрированных и правильно нормированных), число строк - m (количество векторов данных), число столбцов - n (размерность пространства данных);

Матрица нагрузок (Loadings) , где каждый столбец - вектор главных компонент, число строк -- n (размерность пространства данных), число столбцов - k (количество векторов главных компонент, выбранных для проецирования);

Матрица счетов (Scores)

где каждая строка - проекция вектора данных на k главных компонент; число строк - m (количество векторов данных), число столбцов - k (количество векторов главных компонент, выбранных для проецирования);

Матрица Z-счетов (Z-scores)

где каждая строка-- проекция вектора данных на k главных компонент, нормированная на единичную выборочную дисперсию; число строк - m (количество векторов данных), число столбцов - k (количество векторов главных компонент, выбранных для проецирования);

Матрица ошибок (остатков ) (Errors or residuals)

Основная формула:

Таким образом, Метод главных компонент, один из основных методов математической статистики. Основным предназначением его является разграничение между необходимостью исследования массивов данных при минимуме их использования.