Решение уравнений. Линейное уравнение с одной переменной. Линейное уравнение с одной переменной - спиши у антошки

Равенство, содержащее неизвестную переменную называется уравнением .
Всякое значение переменной, при котором выражения принимают равные числовые значения, называется корнем уравнения.
Решить уравнение – значит найти все его корни или установить, что их нет.
Корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число, не равное нулю.
Корни уравнения не изменятся, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак.

Пример 1
6x – 7= 11
6x = 11 + 7
6x = 18
x = 3

Пример 2
22 + 3x = 37
3x = 37 – 22
3x =15
x = 5

Если в уравнении присутствуют подобные слагаемые, следует перенести все подобные в одну часть уравнения, а числовые слагаемые в другую и привести подобные, затем найти корни.
5x + 13= 3x – 3
5x – 3x = – 3 – 13
2x = – 16
х = - 8

Линейным уравнение с одной переменной х называют уравнение вида ах + b = 0. Где a и b - любые числа (коэффиценты).
Решить линейное уравнение – значит найти все значения переменной (неизвестной), при каждом из которых уравнение обращается в верное числовое равенство. Каждое такое значение переменной называют корнем уравнения.
Если а = 0 и b = 0, то есть уравнение имеет вид 0 * х + 0 = 0, то корнем уравнения является любое число (бесконечное множество корней).
Если а = 0 и b ≠ 0, то есть уравнение имеет вид 0 * х + b = 0, то ни одно число этому уравнению не удовлетворяет, уравнение не имеет корней.

Алгоритм решения линейного уравнения ax + b = 0 в случае, когда а ≠ 0
1.Преобразовать уравнение к виду ax = - b.
2.Записать корень уравнения в виде x = (-b) : а

Два уравнения называют равносильными , если они имеют одни и те же корни или оба не имеют корней.
ПРИМЕР: равносильны уравнения 4х-2=0 и 2х – 1 = 0.
Каждый из них имеет корень х =0,5
Процесс решения уравнения состоит в том, что его заменяют более простым уравнением, равносильным исходному.
Равносильность уравнений обозначают символом ⇔;
Равносильные преобразования уравнения - это преобразования, приводящие к равносильному уравнению:
1) прибавление одновременно к обеим частям уравнения любого числа (в частности, перенос слагаемых из одной части уравнения в другую с изменением знака);
2) умножение (и деление) обеих частей уравнения одновременно на любое число, отличное от нуля (в частности, на -1); кроме того, для уравнений в области действительных чисел:
3) возведение обеих частей уравнения в любую нечетную натуральную степень (например, в куб);

Алгоритм решения уравнения ax + b = cx + d (a ≠ c)
1. Перенести все неизвестные члены уравнения из правой части уравнения в левую с противоположными знаками,а известные члены с левой части в правую с противоположенным знаком
2. Привести подобные слагаемые, в результате чего получится уравнение вида kx = m = 0, где k ≠ 0.
3. Записать его корень: x = -m: k.
Например:
3х+5=2х-7
3х-2х= -7 -5
х = -12

Вопросы к конспектам

Найти число (-11х + 5) 2 + х, где х корень уравнения

Найдите корень уравнения: (5,3 - 2,8)х + 2,5х = 1:

Решите уравнение: 1,6(х - 3) = 0,8(х - 5)

Решите уравнение:

Решите уравнение:

Решите уравнение: -13,7 - (-х) = -4,9

Решите уравнение:

Тема урока:

Линейное уравнение с одной переменной


Куделько Марины


Цели урока:


Образовательные: закрепить понятие уравнения, корни уравнения, вспомнить, что означает решить уравнение, ввести и усвоить понятие равносильного уравнения, линейного уравнения, уметь находить линейные уравнения и научиться решать их, ученики должны знать, сколько корней может иметь линейное уравнение.

Развивающие: Развивать у учащихся аккуратность оформления записей, вычислительные навыки учащихся, формировать интерес и любовь к предмету, память и мыслительные операции, формировать умения четко и ясно излагать свои мысли, четко формировать вопросы.

Воспитательные: Способствовать выявлению и раскрытию способностей учащихся, прививать самостоятельность.

Тип урока: изучение нового материала.


План урока:


.Проверка домашнего задания (5 минут)

Так как сегодняшний урок-это урок изучения нового материала, времени на проверку домашнего задания нет, я соберу тетради на проверку, заранее предупредив учеников. Тетради ученики положат на край парты.

.Актуализация опорных знаний

В начале урока нужно вместе с учениками вспомнить уже знакомые понятия уравнения, корня уравнения, вспомнить смысл требования решить уравнение. Учитель проводит фронтальный опрос. А также учитель заранее приготовил на доске маленькие примеры по данным вопросы, ученики выходят к доске и самостоятельно решают, желательно без помощи учителя, так как уже это пройденный материал.



Доказать, что каждое из чисел -5, 0 ,3 является корнем уравнения:


А) z(z-3)(z+5)=0;


Решить уравнение:



Найдите корень уравнения:



Так как в данной теме нам нужно работать с понятием, неизвестным для учеников, то мы его должны сначала ввести. Это понятие - равносильные уравнения. Можно сначала дать несколько уравнений, попросить, чтобы ученики решили их. Потом спросить, что между уравнениями общего. Окажется, что общее между уравнениями - это их одинаковые корни. Если ученики сразу не поймут, то нужно дать еще парочку примеров. И сказать, что такого типа уравнения называются равносильными. Т.е. равносильные уравнения - это уравнения, имеющие одни и те же корни.



Являются ли уравнения равносильными???



Можно привести таблички на доске (или на интерактивной доске):

3. Изучение нового материала

Теперь, когда нужные понятия были вспомнены, некоторые понятия успешно введены, преступим к изучению нового материала.

Учитель заранее подготовил на доске рисунке (или презентацию на эту тему, что намного лучше).

Учитель предлагает задачу ученикам.

Решим уравнение, которое можно наглядно представить на рисунках: корень линейный равносильный уравнение

Мы представили условие уравнения в виде рисунка, что намного нагляднее и понятнее ученикам. Нам даны весы, на которых стоят чашки чая и гирьки, и взаимно друг друга уравновешивают.

Теперь мы будем рассуждать, что будет происходить с нашими весами, если мы отнимем или прибавим одинаковое количество пачек чая.

Рассуждать можно так. Равновесие часов не нарушится, если с каждой чашки снять по 3 пачки чая. (Это видно на рисунке 2).Если 2 пачки чая (!!одинакового веса!!) весят 150г., то одна пачка чая весит 150г. : 2 = 75г.

Эти рассуждения показывают такой путь решения данного уравнения. Вычтем из левой и правой частей уравнения выражение. Получим:

Слагаемые и - в правой части дают нуль. Поэтому получаем:

Значит, ответ.Эти действия учитель делает вместе с учениками, они ему должны подсказывать и помогать. Учитель может попросить повторить сказанное или, что лучше, объяснить эту задачу друг другу в парах, а один или пара учеников потом у доски. Учитель не забывает про похвалу учащихся.

Потом вместе, фронтально, решаем следующий пример.

Решим уравнение:

Если к каждой части уравнения прибавить выражение, то после привидения подобных в правой части не будет слагаемых с переменной, сделаем это (учитель просит проговаривать учеников вслух действия, может спросить у отдельного ученика проговорить или объяснить):

(Приведем подобные и заметим, что 3x и -3x взаимно уничтожатся.)

Сравнивая полученное уравнение с данным, замечаем, что слагаемое - перешло из правой части в левую с противоположным знаком. Приводим подобные в левой части:


Замечаем, что уравнение получается из уравнения после переноса числа из левой части уравнения в правую с противоположным знаком.

Находим, наконец, :

Замечаем, что если в уравнении любое слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.

Переносят слагаемое не просто так, а чтобы в левой части были слагаемые с переменной, а в другой - известные числа. В левой части - неизвестные, в правой - известные.

Если уравнение содержит скобки, то сначала их нужно раскрыть.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

§ 1 Что такое уравнение

Уравнением называют равенство, содержащее неизвестное, значение которого надо найти. Например, записи:

не являются уравнениями. Нет равенства, и значение переменной найти не требуется. Это просто буквенные выражения. А вот записи:

13х - 14 = 2х + 4

являются уравнениями.

Уравнения - это алгебраические модели реальных ситуаций. В процессе работы с моделью мы решаем уравнение.

Решить уравнение - значит найти все его корни или показать, что их нет. Корнем уравнения называют такое значение переменной, при котором уравнение обращается в верное числовое равенство. Для примера рассмотрим уравнение:

Если х = 4, то уравнение примет вид числового равенства:

2∙ 4 - 1 = 5 или 7 = 5

Это неверное числовое равенство, а значит число 4 не является корнем уравнения. Если же х = 3, то уравнение примет вид числового равенства:

2∙ 3 - 1 = 5 или 5 = 5

Это верное числовое равенство, а значит число 3 является корнем уравнения. Причём других корней нет.

§ 2 Линейные уравнения с одной переменной

Уравнение вида ах + b = 0 называют линейным уравнением с одной переменной.

Здесь а и b - коэффициенты, они могут быть выражены любыми числами.

Давайте рассмотрим различные случаи.

1) Если а = 0 и b = 0, то уравнение примет вид 0 ∙ х + 0 = 0. Очевидно, что это уравнение имеет бесконечно много корней, так как любое число при умножении на ноль даёт 0. А значит в результате всегда будет верное числовое равенство.

2) Если а = 0, b ≠0. Тогда уравнение примет вид 0 ∙ х + b = 0. Можно заметить, что такое уравнение не будет иметь ни одного корня. В самом деле, при умножении любого числа на 0 в результате всегда будет получаться 0, но в сумме с числом, отличным от нуля, будет результат отличный от нуля, а значит в любом случае получится неверное числовое равенство.

3) Коэффициент а отличен от нуля, это самый распространенный случай. Рассуждаем так:

Сначала перенесём известное слагаемое в b правую часть уравнения, поменяв знак. Получим:

Затем разделим обе части уравнения на число а. Получим:

Значит в этом случае уравнение имеет только один корень, а именно:

Подведя итоги вышесказанному, можно сделать вывод:

Линейные уравнения с одним неизвестным могут иметь один корень, бесконечно много корней или не иметь ни одного корня.

А как быть, если уравнение записано в более сложном виде? Например, в виде:

4(х - 4) = 2х + 6

В этом случае нам придётся сначала провести ряд преобразований.

Сначала раскроем скобки. Получим:

4х - 16 = 2х + 6

Затем перенесём неизвестные слагаемые в левую часть уравнения, а известные в правую, не забыв поменять знак слагаемого при переносе. Получим:

4х - 2х = 6 + 16

Теперь приведём подобные слагаемые. Получим:

Поделив обе части уравнения на 2 имеем х = 11.

§ 3 Примеры использования понятия «линейное уравнение»

Рассмотрим ещё несколько примеров с использованием понятия «линейное уравнение».

Пример 1. Определить количество корней уравнения 3х + 15 = 3(х +2) + 9.

Это линейное уравнение с одной переменной. Чтобы ответить на вопрос надо сначала преобразовать данное уравнение. Для этого раскроем скобки, получим:

3х + 15 = 3х + 6 + 9

Перенесём известные слагаемые в правую часть уравнения, а неизвестные в левую. Получим:

3х - 3х = 6 + 9 - 15

Приведём подобные слагаемые, получим:

Это равенство верно при любых значениях х, поэтому уравнение имеет бесконечно много корней.

Пример 2. При каком значении переменной значение выражения 4у - 1 равно значению выражения 3у + 5?

Здесь явно задаётся условие равенства двух выражений. Запишем это равенство, получим:

4у - 1 = 3у + 5

Решив это уравнение способом из примера 1 получим у = 6.

Ответ: значения выражений равны при у = 6.

Пример 3. Маме и дочке вместе 35 лет. Сколько лет дочке, если она на 25 лет моложе мамы?

Составим алгебраическую модель данной реальной ситуации. Пусть дочке х лет, тогда маме х + 25 лет. Так как по условию вместе им 35 лет, то составим уравнение:

х + (х + 25) = 35

Решая это уравнение, находим:

Так как буквой х мы обозначили возраст дочки, то найденное число является ответом на вопрос задачи. Ответ: дочке 5 лет.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.