Химическая кинетика и основы термодинамики. Лекция на тему: "Общие закономерности химических процессов. Химическая термодинамика и кинетика". Решение задач по разделу

Лекция 1 Химическая термодинамика. Химическая кинетика и катализ ПЛАН 1. Основные понятия термодинамики. 2. Термохимия. 3. Химическое равновесие. 4. Скорость химических реакций. 5. Влияние температуры на скорость реакций. 6. Явление катализа. Подготовили: к.х.н., доц. Іванець Л.М., ас. Козачок С.С. Лектор ассистент кафедры фармацевтической химии Козачок Соломея Степановна


Термодинамика – Термодинамика – это раздел физики, изучающей взаимные преобразования различных видов энергии, связанных с переходом энергии в форме теплоты и работы. Большое практическое значение термодинамики в том, что она позволяет рассчитать тепловые эффекты реакции, заранее указать возможность или невозможность осуществления реакции, а также условия ее прохождения.






Внутренная енергия Внутренная энергия - кинетическая энергия всех частиц системы (молекул, атомов, электронов) и потенциальная энергия их взаимодействий, кроме кинетической и потенциальной энергии системы в целом. Внутренная энергия является функцией состояния, т.е. ее изменение определяется заданным начальным и конечным состояниями системы и не зависит от пути процесса: U = U 2 – U 1


Первый закон термодинамики Энергия не исчезает бесследно и не возникает из ничего, а только переходит из одного вида в другой в эквивалентном количестве. Вечный двигатель первого рода, то есть периодически действующая машина, которая дает работу, не тратя при этом энергии, невозможен. Q = U + W В любой изолированной системе общий запас энергии сохраняется неизменным. Q = U + W


Тепловой эффект химической реакции при постоянном V или р не зависит от пути прохождения реакции, а определяется природой и состоянием исходных веществ и продуктов реакции Закон Гесса Н 1 Н 2 Н 3 Н 4 Исходние вещества продукты реакции Н 1 = Н 2 + Н 3 + Н 4 Н 1 = Н 2 + Н 3 + Н 4


Второй закон термодинамики, как и первый, является результатом многовекового человеческого опыта. Существуют различные формулировки второго закона, но все они определяют направление самопроизвольных процессов: 1. Теплота не может самопроизвольно переходить от холодного тела к горячему (постулат Клаузиуса). 2. Процесс, единственным результатом которого является превращение теплоты в работу, невозможен (постулат Томсона). 3. Нельзя построить машину периодического действия, которая только охлаждаюет тепловой резервуар и выполняет работу (первый постулат Планка). 4. Любая форма энергии может полностью превратиться в теплоту, но теплота преобразуется в другие виды энергии лишь частично (второй постулат Планка).


Энтропия – термодинамическая функция состояния, поэтому ее изменение не зависит от пути процесса, а определяется только начальным и конечным состояниями системы. тогда S 2 - S 1 = ΔS = S 2 - S 1 = ΔS = Физической смысл энтропии - это количество связанной энергии, которая отнесенная к одному градусу: в изолированных системах, направление течения самопроизвольных процессов определяется изменением энтропии.


Характеристические функции U – функция изохорно-изоэнтропийного процесса: dU = TdS – pdV. Для произволного процесса: U 0 Н – функция изобарно-изоэнтропийного процесса:dН = TdS + Vdp Для произволного процесса: Н 0 S – функция изолированой системы Для произволного процесса: S 0 Для произволного процесса: S 0 F – функция изохорно-изотермического процесса dF = dU – TdS. Для произволного процесса: F 0 G – функция изобарно-изотермического процесса: dG = dH- TdS Для произволного процесса: G 0




Классификация химических реакций по числу стадий Простые протекают в один элементарный химический актСложные протекают в несколько стадий Обратная реакция А В Обратная реакция: А В Паралельние: В А С Последовательные:АВС Сопряженные:А D Сопряженные: А D С В Е В Е








Влияние температуры на скорость реакций Влияние температуры на скорость ферментативных реакций t t


Сравнение Вант- Гоффа: Расчет срока годности лекарств по методу "ускоренного старения" Вант- Гоффа: при t 2 t 1 Температурной коэффициент скорости:













Страница 1

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ И ХИМИЧЕСКОЙ КИНЕТИКИ


Параметр

Обозначение, единица

Смысловое значение

Внутренняя энергия

U, кДж/моль

Полная энергия системы, равная сумме кинетической, потенциальной и других видов энергии всех частиц этой системы. Это функция состояния, приращение которой равно теплоте, полученной системой в изохорном процессе.

Работа

А, кДж/моль

Энергетическая мера направленных форм движения частиц в процессе взаимодействия системы с окружающей средой.

Теплота

Q, кДж/моль

Энергетическая мера хаотических форм движения частиц в процессе взаимодействия системы с окружающей средой.

Первый закон термодинамики

Q=∆U+A

Теплота, подведенная к закрытой системе, расходуется на увеличение внутренней энергии системы и на совершение системой работы против внешних сил окружающей среды.

Энтропия

S, Дж.(моль∙К)

∆S=Q/T, ∆S° р - ции =∑v 1 S°(прод.р-ции)-∑v 1 (исх.в-в)



Функция состояния, характеризующая меру неупорядоченности системы, т.е. неоднородности расположения и движения её частиц, приращение которой равно теплоте, подведенной к системе в обратимом изотермическом процессе, деленной на абсолютную температуру, при которой осуществляется процесс.

Энтальпия

H, кДж/моль
∆H=∆U+p∆V

Функция состояния, характеризующая энергетическое состояние системы в изобарных условиях.

Энтальпия реакции

∆H р-ции, кДж/моль

Количество теплоты, которое выделяется или поглощается при проведении химических реакций в изобарных условиях.

Стандартное состояние

-

Наиболее устойчивая форма при заданной температуре (обычно 298 К) и давлении 1атм.

Стандартные условия

с.у.

Давление: 101 325 Па=1атм=760 мм рт.ст.

Температура: 25⁰С≈298К. n(X)=1 моль.



Стандартная энтальпия образования простых веществ



При с.у. принимается равной нулю для простых веществ в их наиболее термодинамически устойчивом агрегатном и аллотропном состояниях.

Стандартная энтальпия образования сложных веществ

∆H° обр298 (вещество, агрегатное состояние), кДж/моль

Энтальпия реакции образования 1 моль этого вещества из простых веществ в с.у.

Стандартная энтальпия сгорания

∆H° сгор (X), кДж/моль

Энтальпия сгорания (окисления) 1 моль вещества до высших оксидов в среде кислорода при с.у.

Энтальпия растворения

∆H° р-ции,кДж/моль

Где - теплоемкость раствора



Тепловой эффект растворения твердого вещества в изобарных условиях.

Энергия Гиббса

G, кДж/моль
∆G°=∆Н-Т∆S, ∆G° р-ции =∑v 1 ∆G° 1 (прод.р-ции)-∑ v 1 ∆G° 1 (исх.в-в)

Свободная энергия, обобщенная термодинамическая функция состояния системы, учитывающая энергетику и неупорядоченность системы в изобарных условиях.

Константа равновесия химической реакции для равновесия

К равн, (моль/л) ∆ v , где ∆v зависит от значений стехиометрических коэффициентов веществ. Для реакции aA+bB=cC+dD

Равна отношению произведения равновесных концентрация продуктов реакции к произведению равновесных концентраций реагентов в степенях, равных стехиометрическим коэффициентам.

Уравнение изотермы Вант-Гоффа

Для обратимой реакции aA+bB=cC+dD

, ∆G° р-ции =-RTlnK равн,


Позволяет рассчитать энергию Гиббса при заданных значениях концентраций реагентов и продуктов реакции.

Закон действующих масс для кинетики

V=kc(A) a c(B) b

Скорость реакции пропорциональна произведению концентраций реагирующих веществ в степенях, которые называются порядками реакции по соответствующим веществам.

Порядок реакции по веществу

n i

Показатель степени, в которой входит концентрация реагента в уравнение для скорости химической реакции. Порядок может быть любой величиной: целой, дробной, положительной, нулем, отрицательной и даже переменной, зависящей от глубины протекания реакции.

Общий порядок реакции

n=n λ +n β +…

Сумма порядков реакции по всем реагентам.

Средняя скорость реакции по веществу


Усредненная скорость по веществу за данный промежуток времени

Истинная скорость реакции


Характеризует скорость реакции в данный момент времени (∆τ→0); v 1 – стехиометрический коэффициент вещества в реакции.

Истинная скорость реакции по веществу


Характеризует скорость по веществу в данный момент времени (∆τ→0).

Константа скорости реакции

k, c -1 – для реакций 1-го порядка; л/(моль∙с) – для реакций 2-го порядка

Индивидуальная характеристика реакции, численно равна скорости реакции при концентрациях реагентов, равных 1 моль/л.

Энергия активации

Е а, кДж/моль

Минимальная избыточная энергия взаимодействующих частиц, достаточная для того, чтобы эти частицы вступили в химическую реакцию.

Период полупревращения

Τ1/2, с, мин, ч, сут

Время, за которое концентрация реагирующего вещества уменьшается вдвое.

Период полураспада

Τ1/2, с, мин, ч, сут

Время, за которое количество радиоактивного уменьшается в 2 раза.

Кинетическое уравнение для реакций 1-горядка (интегральная форма)

c=c 0 е - kt


Уравнение линейно относительно переменных ln с и t; k- константа скорости реакции 1-го порядка; с 0 -концентрация исходного вещества в начальный момент времени; с- текущая концентрация исходного вещества в момент времени t; t – время, прошедшее от начала реакции.

Правило Вант-Гоффа

где - температурный коэффициент скорости реакции;

Любой процесс протекает во времени, следовательно можно говорить о скорости процесса. Это относится и к химическим реакциям. Раздел химии, рассматривающий скорости и механизмы химических процессов, называется химической кинетикой. Скорость химических реакций определяется изменением молярной концентрации одного из реагирующих веществ или продуктов реакции в единицу времени. A B

Факторы, влияющие на скорость реакции 1. Природа реагирующих веществ Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало активны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно. Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно при нагревании. Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает. Закон действующих масс Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. Предположим, имеем реакцию: a. A + b. B =d. D + f. F. Общее уравнение скорости реакции запишется как = k [A]a [B]b Это называется кинетическим уравнением реакции. k - константа скорости реакции. k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ. Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит. Показатели степеней при концентрациях в кинетическом уравнении называются порядками реакции по данному веществу, а их сумма общим порядком реакции. Порядки реакций устанавливаются экспериментально, а не по стехиометрическим коэффициентам.

Порядок может быть и дробным. Реакции обычно идут по стадиям, поскольку невозможно представить себе одновременное столкновение большого числа молекул. Предположим, что некая реакция A + 2 B = C + D идет в две стадии A + B = AB и AB + B = C + D, тогда, если первая реакция идет медленно, а вторая быстро, то скорость определяется первой стадией (пока она не пройдет, не может идти вторая), т. е. накоплением частиц АВ. Тогда и = k. CACB. Скорость реакции определяется самой медленной стадией. Отсюда различия между порядком реакции и стехиометрическими коэффициентами. Например, реакция разложения перекиси водорода 2 H 2 O 2= H 2 O + O 2 на самом деле реакция первого порядка, т. к. она лимитируется первой стадией H 2 O 2 = H 2 O + O а вторая стадия О + О = О 2 идет очень быстро. Может быть самой медленной не первая, а вторая или другая стадия и тогда мы получаем иногда дробный порядок, выражая концентрации интермедиатов через концентрации начальных веществ.

Определение порядка реакции. Графический метод. Для определения порядка реакции можно прибегнуть к графическому представлению функций, описывающих зависимость концентрации от времени. Если при построении зависимости С от t получается прямая, это означает, что реакция – нулевого порядка. Если линейна зависимость lg C от t, имеет место реакция первого порядка. При условии что начальная концентрация всех реагентов одинакова, реакция имеет второй порядок, если линейным является график зависимости 1/С от t, и третий – в случае линейности зависимости 1/С 2 от t.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2 - 4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле: t 2/ t 1= (t 2 - t 1)/10 (где t 2 и t 1 - скорости реакции при температурах t 2 и t 1 соответственно; - температурный коэффициент данной реакции). Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A e–Ea/RT где A - предэкспоненциальный множитель, постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная ; Ea - энергия активации, т. е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Энергетическая диаграмма химической реакции. Экзотермическая реакция Эндотермическая реакция А - реагенты, В - активированный комплекс (переходное состояние), С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

Энергия активации обычно составляет 40 - 450 к. Дж/моль и зависит от механизма реакций: а) Простые H 2 +I 2 = 2 HI Еа = 150 - 450 к. Дж/моль б) Реакции ионов с молекулами Еа = 0 - 80 к. Дж/моль. Пример: облучение светом молекулы воды ионизирует ее H 2 O + = H 2 O+ + e-, такой ион уже легко вступает во взаимодействия. в) Радикальные реакции - во взаимодействие вступают радикалы - молекулы с неспаренными электронами. OH, NH 2, CH 3. Еа = 0 – 40 к. Дж/моль.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. Измельчение твердых веществ приводит к увеличению числа активных центров. Активный центр – это участок на поверхности твердого вещества, на котором протекает химическая реакция. Реакция в гомогенной системе протекает за счет диффузии. Диффузия – это самопроизвольный массоперенос, который способствует равномерному распределению вещества по всему объему системы.

Скорость гетерогенных реакций В гетерогенной реакции участвуют несколько фаз, среди которых есть фазы постоянного состава, поэтому концентрация веществ этой фазы считается постоянной: не меняется в процессе реакции и не входит в кинетическое уравнение. Например: Са. О(тв) + СО 2(Г) = Са. СО 3(тв) Скорость реакции зависит только от концентрации СО 2 и кинетическое уравнение имеет вид: u = к * С(СО 2) Взаимодействие протекает на поверхности раздела фаз, и его скорость зависит от степени измельчения Са. О. Реакция складывается из двух стадий: перенос реагентов через поверхность раздела и взаимодействия между реагентами.

5. Присутствие катализатора Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Реакции, протекающие с участием катализаторов, называются катализом. Различают два типа катализа: 1) положительный: скорость реакции возрастает (участвуют катализаторы); 2) отрицательный: скорость реакции уменьшается (участвуют ингибиторы)

Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При этом катализатор не оказывает влияние на изменение энтальпии, энтропии и энергии Гиббса при переходе от исходных веществ к конечным. Также катализатор не оказывает влияние на равновесие процесса, он может лишь ускорить момент его наступления. Энергетическая диаграмма реакции: 1 – без катализатора (Еа) 2 – реакция в присутствии катализатора (Еа (кат))

По характеру каталитических процессов катализ делится на гомогенный и гетерогенный. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях).

При гомогенном катализе реакция идет во всем объеме сосуда, что способствует высокой эффективности действия катализатора, но при этом затруднено выделение продуктов из реакционной смеси. Пример: получение серной кислоты камерным способом 2 NO + O 2 = 2 NO 2 SO 2 + NO 2 = SO 3 + NO Процесс окисления диоксида серы до триоксида катализируется оксидом азота (+2). Наиболее распространенными катализаторами жидкофазных реакций являются кислоты и основания, комплексы переходных металлов и ферменты (ферментативный катализ).

Ферментативный катализ Катализаторами в ферментативном катализе являются ферменты. Под действием ферментов протекают все процессы в живых организмах. Характерной особенностью ферментов является их специфичность. Специфичность – это свойство фермента изменять скорость реакций одного типа и не влиять на многие другие реакции, протекающих в клетке.

Гетерогенный катализ Гетерогенные процессы протекают на поверхности раздела фаз. Более изучены процессы, протекающие в газовых фазах с участием твердого катализатора. Гетерогенный катализ на твердой поверхности объясняется на основе представлений теории адсорбции. Адсобция – это накопление молекул на поверхности раздела фаз (не путать с абсорбцией – поглощение молекул другого вещества всем объемом твердого). Различают адсорбцию двух типов: физическую и химическую.

Физическая адсорбция происходит при связывании молекул с активными центрами на поверхности твердого вещества силами Ван-дер-Ваальса (межмолекулярное взаимодействие). Химическая адсорбция (хемосорбция) происходит, если молекулы связываются с активными центрами на поверхности химическими связями (идет химическая реакция).

Механизм гетерогенного катализа Гетерогенный катализ включает как физическую, так и химическую адсорбцию. Такой катализ включает 5 стадий: 1) диффузия: реагирующие молекулы диффундируют к 2) 3) 4) 5) поверхности твердого катализатора; Адсорбция: сначала идет физическая адсорбция, затем хемосорбция; Химическая реакция: реагирующие молекулы, оказавшиеся рядом, вступают в химическую реакцию с образованием продуктов; Десорбция: стадия, обратная адсорбции – высвобождение продуктов реакции с поверхности твердого катализатора; Диффузия: молекулы продуктов диффундируют от поверхности катализатора

Схема каталитического гидрирования этилена тонкоизмельченным никелем Реакцию каталитического гидрирования суммарно можно записать: С 2 Н 4(г) + Н 2(г) → С 2 Н 6(г) Реакция идет при Т = 400 К. Для увеличения эффективности атализаторов к к ним добавляются вещества – промоторы (оксиды калия, алюминия и др.).

Каталитические преобразователи (конверктеры) используются в некоторых системах выброса выхлопных газов для превращения вредных газов в безвредные. Схема типичного каталитического преобразователя

Выхлопные газы, содержащие СО и углеводороды, пропускают через слой шариков, покрытых платиновыми и палладиевыми катализаторами. Преобразователь нагревают и через него прогоняют избыток воздуха. В результате СО и углеводороды превращаются в СО 2 и воду, которые являются безвредными веществами. Бензин, которыми заправляют автомобили не должен содержать примесей свинца, иначе эти примеси отравят катализатор.

Реакции могут идти в двух противоположных направлениях. Такие реакции называются обратимыми. Необратимых реакций не бывает. Просто в определенных условиях некоторые реакции можно довести практически до конца, если удалять из сферы реакции продукты - осадок, газ или малодиссоциирующее вещество и т. д.

Рассмотрим обратимую реакцию A + В ↔ D + С В начальный момент времени, когда концентрации веществ А и В максимальны, скорость прямой реакции тоже максимальна. С течением времени скорость прямой реакции падает пр= kпр *С(A)*С(B) Реакция приводит к образованию D и С, молекулы которых, сталкиваясь могут вновь реагировать, образуя снова A и B. Чем выше концентрация D и С, тем вероятнее обратный процесс, тем выше скорость обратной реакции об= kоб *С(D) С(С)

Изменение скоростей прямой и обратной реакций можно представить графиком: По мере прохождения реакции наступает такой момент, когда скорости прямой и обратной реакций делаются равными, кривые пр и об сливаются в одну прямую линию, параллельную оси времени, т. е. пр = об

Такое состояние системы называется состоянием равновесия. При равновесии концентрации всех участников реакции остаются постоянными и не меняются со временем, хотя одновременно идут и прямая и обратная реакции. Т. е. равновесие является динамическим. При равновесии пр= об или kпр С(А)*С(В) = kоб С(D) *С(С) откуда - константа химического равновесия равна: Кс = кпр/ кобр = [С] * [D] [А] * [В]

Константа равновесия не зависит от механизма протекания реакции (даже при введении в систему катализатора: катализатор может ускорить наступление момента равновесия, но не влияет на значения равновесных концентраций). Константа равновесия зависит от природы реагирующих веществ и температуры. Зависимость константы равновесия от температуры можно выразить соотношением: ∆G 0 = -R ·T · ln. Kc или ∆G 0 = -2, 3·R ·T · lg. Kc

Так как равновесие в системе является динамическим, то его можно смещать (сдвиг равновесия) в сторону прямой или обратной реакции, изменяя условия: концентрацию, температуру или давление. Чтобы определить, в какую сторону оно сместится, можно воспользоваться принципом Ле Шателье: если на систему, находящуюся в равновесии, оказывается воздействие, равновесие смещается в сторону той реакции, которая ослабляет это воздействие.

Увеличение концентрации кислорода или диоксида серы приведет к смещению равновесия вправо 2 SO 2 + O 2 2 SO 3. Повышение температуры смещает равновесие в сторону эндотермической реакции, поскольку при этом поглощается избыточное тепло и температура понижается Ca. CO 3 Ca. O + CO 2 - Q В данной реакции повышение температуры смещает равновесие в сторону разложения карбоната.

При увеличении давления равновесие смещается в сторону уменьшения количества молей газа. 2 SO 2 + O 2 2 SO 3 В этой реакции увеличение давления приведет к сдвигу равновесия вправо, уменьшение давление – влево. В случае одинакового количества молей газа в правой и левой частях уравнения изменение давления не влияет на равновесие. N 2(г) + O 2 (г) = 2 NO(г)

Химическая термодинамика изучает превращения энергии и энергетические эффекты, сопровождающие химические и физические процессы, а также возможность и направление самопроизвольного протекания процесса. Химическая термодинамика является основой современной химии. Химическая реакция - процесс, при котором одни связи заменяются другими, образуются одни соединения, разлагаются другие. Следствие - энергетические эффекты, т. е. изменение внутренней энергии системы.

а) Система - тело или группа тел, находящихся во взаимодействии с окружающей средой и мысленно обособляемых от нее (вода в стакане). Если такая система не обменивается веществом со средой (стакан покрыт крышкой), она называется закрытой. Если же система имеет постоянный объем и рассматривается как лишенная возможности обмена веществом и энергией с окружающей средой (вода в термосе), такая система называется изолированной.

б) Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и. д. , т. е. все виды энергии кроме кинетической и потенциальной энергии системы в целом. Внутреннюю энергию нельзя определить, поскольку у системы нельзя отнять всю энергию. в) Фаза - гомогенная часть гетерогенной системы (вода и лед в стакане) Фазовый переход - превращения фаз (таяние льда, кипение воды)

Энергетические превращения в ходе процесса выражаются в виде теплового эффекта - либо теплота выделяется (экзотермические реакции), либо поглощается (эндотермические реакции). Количество выделенной или поглощенной теплоты Q называется тепловым эффектом реакции. Изучением тепловых эффектов занимается термохимия.

Процессы могут протекать либо при постоянном объеме V=const (изохорные процессы), либо при постоянном давлении p=const (изобарные процессы). Поэтому и тепловые эффекты будут различаться Qv и Qp. Система в ходе реакции переходит из начального состояния 1 в конечное состояние 2, каждому из которых соответствует своя внутренняя энергия U 1 и U 2. Таким образом, изменение внутренней энергии системы составляет ∆ U= U 2 - U 1

Cистема, изменяясь, всегда совершает работу А (чаще работу расширения). Следовательно, тепловой эффект реакции равен в соответствии с законом сохранения и превращения энергии (1 закон термодинамики): Q = U + A где А - работа, производимая системой Так как А – это работа расширения, то A = р(V 2 – V 1) = p V Для изохорного процесса (V=const): V = 0, следовательно, U = Qv При р = const (изобарный процесс): Qp = ∆U +A = (U 2 – U 1) + p(V 2 – V 1) = (U 2 + p. V 2) – (U 1 + p. V 1) = H 2 – H 1 обозначим U + p. V = H

H - энтальпия или теплосодержание расширенной системы. Тогда H = Н 2 – Н 1 H - изменение энтальпии системы. Энтальпия - характеристика (функция) состояния системы, отражает энергетическое состояние системы и учитывает работу расширения (для газов). Энтальпия сама по себе как и U не может быть определена. Можно определить только ее изменение в ходе химической реакции.

Раздел химии, изучающий тепловые эффекты, называется термохимией. Химические уравнения, в которых указан тепловой эффект называются термохимическими уравнениями. 1/2 H 2(г) + 1/2 Cl 2(г) = HCl(г); H = - 92 к. Дж Zn(к) + H 2 SO 4(р) = Zn. SO 4(р) + Н 2(г); Н = -163. 2 к. Дж

1) Знак теплового эффекта - если тепло выделяется, внутренняя энергия системы уменьшается (-), для эндотермических процессов (+). 2) При написании термохимических уравнений необходимо указывать агрегатное состояние вещества, поскольку переход из одного агрегатного состояния в другое также сопровождается тепловым эффектом. 3) H зависит от количества вещества, поэтому важно уравнивать реакции, при этом коэффициенты могут быть дробными. Уравнение (1) можно записать и так H 2 + Cl 2 = 2 HCl, но тогда H/ = 2 H. 4) Н зависит от условий - от температуры и давления. Поэтому обычно приводятся стандартные значения Нo Cтандартные условия: p = 1 атм (101 к. Па), температура 25 о. С (298 К) - отличие от нормальных условий.

Законы термохимии 1. Закон Лавуазье-Лапласа: Тепловой эффект обратной реакции равен тепловому эффекту прямой, но с обратным знаком. H = - Qp 2. Закон Гесса: Тепловой эффект реакции зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути процесса. Следствия из закона Гесса 1) Тепловой эффект кругового процесса равен нулю. Круговой процесс - система, выйдя из начального состояния, в него же и возвращается. H 1 + H 2 - H 3 = 0

2) Тепловой эффект реакции равен сумме стандартных энтальпий образования продуктов реакции за вычетом суммы стандартных образования начальных (исходных) веществ с учетом их стехиометрических коэффициентов. Н 0 = Нf 0 (прод)- Нf 0 (исх) Нf 0 – стандартная энтальпия образования 1 моль вещества из простых веществ, к. Дж/моль (значения определяются по справочнику). 3) Тепловой эффект реакции равен сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания конечных продуктов. Нсг 0 = Нсг 0 (прод) - Нсг 0 (исх)

Поскольку H определить нельзя, а можно только определить ее изменение H, т е. нет точки отсчета, договорились, считать за таковую состояние простых веществ, т. е. считать равными нулю стандартную энтальпию образования простых веществ: Нf 0 (прост. в-ва) = 0 Простое вещество – это форма существования химического элемента в том агрегатном состоянии и в той аллотропной модификации, которая наиболее устойчива при стандартных условиях.

Например, кислород – газ, простое вещество O 2, но не жидкость и не O 3. Углерод - простое вещество графит (для перехода в алмаз H>0) Значения Hfo могут быть и отрицательными [ Ho(HCl)=-92. 3 к. Дж/моль], и положительными [ Ho(NO) = +90. 2 к. Дж/моль]. Чем отрицательнее значения стандартных энтальпий образования, тем устойчивее вещества.

На основании второго следствия из закона Гесса можно рассчитать H 0 реакции, зная теплоты образования участвующих веществ. Ca. O(к) + Si. O 2(к) = Ca. Si. O 3(к) Н 0 = Нf 0 (прод)- Нf 0 (исх) Ho = Hfo(Ca. Si. O 3) - Hfo(Ca. O) - Hfo(Si. O 2) Ho = (- 1635) – (- 635. 5) – (- 859. 4) = = - 139. 1 к. Дж/моль Таким образом, на основании следствия из закона Гесса существует возможность расчета тепловых эффектов реакций и определения стандартных энтальпий образования веществ.

По знаку теплового эффекта можно определить возможность протекания химического процесса при стандартных условиях: если ∆Н 0 0 (эндореакция) – процесс самопроизвольно не протекает Тепловые эффекты измеряются экспериментально при помощи калориметра. Выделяющееся или поглощающееся тепло измеряется по изменению температуры теплоносителя (воды), в которую помещен сосуд с реагирующими веществами. Реакция проводится в замкнутом объеме.

Энтропия Основной вопрос когда рассматриваются проблемы термодинамики - принципиальная возможность самопроизвольного протекания процесса, его направление. XIX век. Бертло и Томсен сформулировали следующий принцип: любой химический процесс должен сопровождаться выделением тепла. Аналогия с механикой - тело на наклонной плоскости катится вниз (уменьшение энергии). Кроме того, большинство энтальпий образования, известных в то время были отрицательными. Однако вскоре обнаружились исключения: теплоты образования оксидов азота положительны, самопроизвольно идут многие эндотермические реакции, например растворение солей (нитрат натрия). Следовательно, критерия, предложенного Бертло и Томсеном, не достаточно.

Таким образом, по изменению энергии системы или энтальпии судить о самопроизвольности процесса нельзя. Чтобы предсказать, возможно ли самопроизвольное протекание реакции необходимо ввести еще одну термодинамическую функцию – энтропию. Возьмем два сосуда с разными газами и откроем кран, соединяющий их. Газы смешаются. Никаких изменений внутренней энергии не происходит, однако процесс смешения газов идет самопроизвольно, в то время как их разделение потребует затраты работы. Что изменилось? Изменился порядок.

Вывод: Самопроизвольный процесс, проходящий без изменения энтальпии, совершается в направлении, при котором беспорядок в системе возрастает. Поскольку смешение газов более вероятно, чем их раздельное существование в одном сосуде, можно сказать, что движущей силой смешения газов является тенденция перейти в более вероятное состояние.

Энтропия - это мера беспорядка, хаотичности или неупорядоченности в системе. Определенная трудность при определении энтропии: энергетические запасы смешивающихся газов складываются, а вероятности состояния перемножаются (H=H 1+H 2; но W=W 1 W 2), в то же время, для определения направления процесса нужно суммировать две движущие силы. Химия имеет дело с очень большим числом частиц и поэтому число микросостояний тоже очень большое, т. к. частицы в системе постоянно находятся в движении, а не закреплены на определенном месте.

Поэтому, вероятность состояния системы можно представить в виде функции, которая вела бы себя как энергия. Тогда придумали использовать логарифм вероятности, а для придания ему размерности, сопоставимой с энергией, домножили на R и назвали энтропией S: S = Rln. W Энтропия это логарифмическое выражение вероятности существования системы. Энтропия измеряется в тех же единицах, что и универсальная газовая постоянная R - Дж/К моль. 2 закон термодинамики: реакция осуществляется самопроизвольно только в направлении, при котором энтропия системы возрастает.

Как можно себе представить вероятность состояния? Пусть мы снимаем газ на кинопленку. При рассмотрении каждого кадра в отдельно получается разное расположение молекул при одинаковых условиях (P и T) в каждый момент времени, т. е. множество микросостояний, которые нельзя наложить друг на друга так, чтобы они совпали. Таким образом, энтропия пропорциональна числу микросостояний, которыми можно обеспечить данное макросостояние. Макросостояние определяется температурой и давлением, а микросостояния числом степеней свободы. Одноатомный газ – имеет три степени свободы частиц (движение в трехмерном пространстве); в двухатомных добавляются вращательные степени свободы и колебания атомов; в трехатомных - количество вращательных и колебательных степеней свободы растет. Вывод. Чем сложнее молекула газа, тем больше ее энтропия.

Изменение энтропии Говоря об энтальпии можно оперировать только H, поскольку отсутствует точка отсчета. С энтропией дело обстоит иначе. При абсолютном нуле температур любое вещество должно представлять собой идеальный кристалл - полностью заморожено всякое движение. Следовательно, вероятность такого состояния равна 1, а энтропия равна нулю. 3 закон термодинамики: Энтропия идеального кристалла при 0 К равна 0.

При Т=0 энтропия равна 0. При повышении Т начинаются колебания атомов и S растет до Тпл. Далее следует фазовый переход и скачок энтропии Sпл. С повышением Т энтропия плавно и незначительно растет до Тисп, где снова наблюдается резкий скачок Sисп и опять плавное увеличение. Очевидно, что энтропия жидкости существенно превышает энтропию твердого тела, а энтропия газа - энтропию жидкости. Sгаз>>Sж>>Sтв

Для энтропии справедлив закон Гесса - изменение энтропии, как и изменение энтальпии, не зависит от пути процесса, а зависит только от начального и конечного состояний S = Sf 0 (прод) - Sf 0 (исх) Sf 0 – абсолютная энтропия вещества, Дж/моль*К Знак изменения энтропии указывает направление процесса: если S > 0 процесс протекает самопроизвольно если S

Направление химического процесса Самопроизвольное протекание химического процесса определяется двумя функциями - изменением энтальпии Н, которое отражает взаимодействие атомов, образование химических связей, т. е. определенное упорядочение системы и изменением энтропии S, которое отражает противоположную тенденцию к беспорядочному расположению частиц. Если S=0, то движущей силой процесса будет стремление системы к минимуму внутренней энергии, т. е. уменьшение энтальпии или Н 0.

Для того, чтобы можно было количественно сопоставить эти два критерия, нужно, чтобы они выражались в одинаковых единицах. (Н - к. Дж, S - Дж/K). Так как энтропия напрямую зависит от температуры, то Т S - энтропийный фактор процесса, Н - энтальпийный. В состоянии равновесия оба эти фактора должны равны Н = Т S Это уравнение универсально, оно относится и к равновесию жидкость-пар и к другим фазовым превращениям, а также к химическим реакциям. Благодаря этому равенству можно рассчитать изменение энтропии в равновесном процессе, т. к. при равновесии Н/T = S.

Движущая сила химического процесса определяется двумя функциями состояния системы: стремление к упорядочению (Н) и стремление к беспорядку (TS). Функция, которая учитывает это называется энергией Гиббса G. При Р = const и Т = const энергию Гиббса G находят по выражению: G = Н – ТS или ∆G = ∆Н – Т∆S Это соотношение называется уравнением Гиббса Величина G называется изобарноизотермическим потенциалом или энергией Гиббса, которая зависит от природы вещества, его количества и от температуры.

Энергия Гиббса является функцией состояния, поэтому ее изменение можно также определить по второму следствию из закона Гесса: ∆G 0 = Gf 0 (прод) - Gf 0 (исх) ∆Gf 0 – стандартная свободная энергия образования 1 моль вещества из входящих в него элементов в их стандартных состояниях, к. Дж/моль (определяется по справочнику). ∆Gf 0(прост. в-ва) = 0 По знаку ∆G 0 можно определить направление процесса: если ∆G 0 0, то процесс самопроизвольно не идет

Чем меньше ∆G, тем сильнее стремление к протеканию данного процесса и тем дальше от состояния равновесия, при котором ∆G = 0 и ∆Н = Т · ∆S. Из соотношения ∆G = ∆Н – Т·∆S видно, что самопроизвольно могут протекать и процессы, для которых ∆Н > О (эндотермические). Это возможно, когда ∆S > О, но |T∆S| > |∆H|, и тогда ∆G O.

Пример 1: Вычислить теплоту образования аммиака, исходя из реакции: 2 NH 3(г)+3/2 O 2(г)→N 2(г) + 3 H 2 O(ж), ∆H 0 = -766 к. Дж Теплота образования воды (ж) равна – 286, 2 к. Дж/моль Решение: ∆Н 0 данной химической реакции составит: Н 0 х. р. = Н 0 прод - Н 0 исх= Н 0(N 2) + 3. Н 0(H 2 O) - 2 Н 0(NH 3)– 3/2 Н 0(O 2) Так как теплоты образования простых веществ в стандартном состоянии равны нулю, следовательно: Н 0(NH 3)=[ Н 0(N 2) + 3. Н 0(H 2 O) - Н 0 х. р. ]/2 Н 0(NH 3)= / 2 = 3. (– 286, 2)–(-766)] / 2 = = -46, 3 к. Дж/моль

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе CH 4(г) + CO 2(г) ↔ 2 СО(г) + 2 H 2(г)? Решение: Находим ∆G 0 процесса из соотношения: ∆G 0298 = G 0298 прод - G 0298 исх ∆G 0298= – [(-50, 79) + (-394, 38)] = +170, 63 к. Дж. То, что ∆G 0298>0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298 К и равенстве давлений взятых газов 1, 013· 105 Па (760 мм рт. ст. = 1 атм.). Следовательно, при стандартных условиях будет протекать обратная реакция.

Пример 3. Вычислите ∆Н 0298, ∆S 0298, ∆G 0298 реакции, протекающей по уравнению: Fe 2 O 3(т) + 3 С(графит) = 2 Fe(т) + 3 СО(г) Определить температуру, при которой начнется реакция (температуру равновесия). Возможна ли реакция восстановления Fe 2 O 3 углеродом при температурах 500 и 1000 К? Решение: ∆Н 0 и ∆S 0 находим из соотношений: Н 0 = Нf 0 прод- Нf 0 исх и S 0 = Sf 0 прод- Sf 0 исх ∆Н 0298=(3·(-110, 52) + 2· 0) – (- 822, 10 + 3· 0)= - 331, 56 + 822, 10=+490, 54 к. Дж; ∆S 0298=(2· 27, 2 + 3· 197, 91) – (89, 96 + 3· 5, 69) = 541, 1 Дж/К

Находим температуру равновесия. Так как состояние системы в момент равновесия характеризуется ∆G 0 = 0, то ∆Н 0 = Т·∆S 0, следовательно: Тр = ∆Н 0 /∆S 0 Тр = 490, 54*1000/541, 1 = 906, 6 к Энергию Гиббса при температурах 500 К и 1000 К находим по уравнению Гиббса: ∆G 0 =∆Н 0 -Т·∆S 0 ∆G 500 = 490, 54 – 500· 541, 1/1000=+219, 99 к. Дж; ∆G 1000 = 490, 54 – 1000· 541, 1/1000 = - 50, 56 к. Дж. Так как ∆G 500> 0, а ∆G 1000

Пример 4. Реакция горения этана выражается термохимическим уравнением: C 2 H 6(г) + 3½O 2 = 2 CO 2(г) + 3 H 2 O(ж); ∆H 0= -1559, 87 к. Дж. Вычислите теплоту образования этана, если известны теплоты образования CO 2(г) и H 2 O(ж) (справочные данные). Решение Необходимо вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид 2 С(графит)+3 H 2(г)=C 2 H 6(г); ∆H=? Исходя из следующих данных: а)C 2 H 6(г)+3½O 2(г)=2 CO 2(г)+3 H 2 O(ж); ∆H= -1559, 87 к. Дж. б)С(графит)+O 2(г)=CO 2(г); ∆H = -393, 51 к. Дж. в) H 2(г) + ½O 2 = H 2 O(ж); ∆H = -285, 84 к. Дж. На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) – на 3 , а затем сумму этих уравнений вычесть из уравнения (а):

C 2 H 6 + 3½O 2 – 2 С – 2 O 2 – 3 H 2 – 3/2 O 2 = 2 CO 2 + 3 H 2 O – 2 CO 2 – 3 H 2 O ∆H = -1559, 87 – 2 · (-393, 51) – 3 · (-285, 84); ∆H = -1559, 87 + 787, 02 + 857, 52; C 2 H 6=2 С+3 H 2; ∆H = +84, 67 к. Дж. Так как теплота образования равна теплоте разложения с обратным знаком, то ∆H 0298(C 2 H 6)= -84, 67 к. Дж. К тому же результату придем, если для решения задачи применить вывод из закона Гесса: ∆H =2∆H 0298(C 2 H 6) + 3∆H 0298(C 2 H 6) –∆H 0298(C 2 H 6)– 3½∆H 0298(O 2). Учитывая, что стандартные теплоты образования простых веществ условно приняты равными нулю, ∆H 0298(C 2 H 6) = 2∆H 0298(СО 2) + 3∆H 0298(Н 2 О) – ∆H ∆H 0298(C 2 H 6) = 2 · (-393, 51) + 3 · (-285, 84) + 1559, 87; ∆H 0298(C 2 H 6) = -84, 67 к. Дж.

Вещество при изменении давления и температуры может переходить из одного агрегатного состояния в другое. Эти переходы, совершающиеся при постоянной температуре, называются фазовыми переходами первого рода. Количество теплоты, которое вещество получает из окружающей среды либо отдает окружающей среде при фазовом переходе, есть скрытая теплота фазового перехода Qфп.

Если рассматривается гетерогенная система, в которой нет химических взаимодействий, а возможны лишь фазовые переходы, то при постоянстве температуры и давления в системе существует т. е. фазовое равновесие. Фазовое равновесие характеризуется некоторым числом фаз, компонентов и числом степеней свободы системы.

Компонент – химически однородная составная часть системы, которая может быть выделена из системы и существовать вне её. Число независимых компонентов системы равно разности числа компонентов числа возможных химических реакций между ними. Число степеней свободы – число параметров состояния системы, которые могут быть одновременно произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

Число степеней свободы гетерогенной термодинамической системы в состоянии фазового равновесия, определяется правилом фаз Гиббса: Число степеней свободы равновесной термодинамической системы С равно числу независимых компонентов системы К минус число фаз Ф плюс число внешних факторов, влияющих на равновесие. Для системы, на которую из внешних факторов влияют только температура и давление, можно записать: С = К – Ф + 2

Системы классифицируют по числу компонентов (одно-, двухкомпонентные и т. д.), по числу фаз (одно-, двухфазные и т. д.) и числу степеней свободы (инвариантные, моно-, дивариантные и т. д.). Для систем с фазовыми переходами обычно рассматривают графическую зависимость состояния системы от внешних условий – т. е. диаграммы состояния.

Анализ диаграмм состояния позволяет определить число фаз в системе, границы их существования, характер взаимодействия компонентов. В основе анализа диаграмм состояния лежат два принципа: принцип непрерывности и принцип соответствия.

Принцип непрерывности: при непрерывном изменении параметров состояния все свойства отдельных фаз изменяются также непрерывно; свойства системы в целом изменяются непрерывно до тех пор, пока не изменится число или природа фаз в системе, что приводит к скачкообразному изменению свойств системы.

Принцип соответствия: на диаграмме состояния системы каждой фазе соответствует часть плоскости – поле фазы. Линии пересечения плоскостей отвечают равновесию между двумя фазами. Всякая точка на диаграмме состояния (фигуративная точка) отвечает некоторому состоянию системы с определенными значениями параметров состояния.

Рассмотрим и проанализируем диаграмму состояния воды. Вода – единственное присутствующее в системе вещество, число независимых компонентов К = 1. Диаграмма состояния воды В системе возможны три фазовых равновесия: между жидкостью и газом (линия ОА – зависимость давления насыщенного пара воды от температуры), твердым телом и газом (линия ОВ – зависимость давления насыщенного пара над льдом от температуры), твердым телом и жидкостью (линия ОС – зависимость температуры плавления льда от давления). Три кривые имеют точку пересечения О, называемую тройной точкой воды; тройная точка отвечает равновесию между тремя фазами.

В тройной точке система трехфазна и число степеней свободы равно нулю; три фазы могут находиться в равновесии лишь при строго определенных значениях Т и Р (для воды тройная точка отвечает состоянию с Р = 6. 1 к. Па и Т = 273. 16 К). Внутри каждой из областей диаграммы (АОВ, ВОС, АОС) система однофазна; число степеней свободы системы равно двум (система дивариантна), т. е. можно одновременно изменять и температуру, и давление, не вызывая изменения числа фаз в системе: С = 1 – 1 + 2 = 2 Диаграмма состояния воды На каждой из линий число фаз в системе равно двум и, согласно правилу фаз, система моновариантна, т. е. для каждого значения температуры имеется только одно значение давления, при котором система двухфазна: С = 1 – 2 + 2 = 1

Разрыв химических связей сопровождается поглощением определенного количества энергии (эндотермическая реакция), а образование связи – выделением энергии (экзотермическая реакция). В зависимости от соотношения этих количеств в результате химической реакции энергия выделяется или поглощается. Оба типа реакций являются идут в соответствии со вторым началом термодинамики для открытых систем. Экзотермические реакции порождают хаос, допуская утечку энергии в окружающую среду, но при этом понижают энтропию внутри системы, создавая новую более сложную структуру. Эндотермические реакции понижают энтропию в окружающей среде и за счет энергии взятой извне увеличивают хаос внутри системы.

Основными направлениями современной химии являются кинетика и термодинамика химических реакций, которые позволяют теоретически объяснить эффективность и скорость протекания реакций. В соответствии с господствующей теорией «соударения», эффективность и скорость реакции зависят от концентрации реагирующих веществ и кинетической энергии хаотичного движения их молекул. Однако высокая эффективность и скорость многих реакций имеет место и при низких концентрациях и пониженной температуре. В этом случае эффективность обеспечивается наличием в реакционной смеси катализатора - вещества, ускоряющего химическую реакцию, но не входящее в состав ее конечных продуктов. Например. Механизм действия катализатора К в реакции А+В=АВ можно схематически показать так: 1) А+ К = А К ; 2) А К .+В=АВ+ К . При этом взаимодействие реагирующих веществ с катализаторами не обязательно имеет химическую природу. Эффективность реакций в живых клетках ограничена достаточно низкими температурами, связными с сохранением белковой структуры и низкими концентрациями реагирующих веществ, поэтому все клеточные реакции являются каталитическими . Роль катализаторов большинства реакций в живых клетках играют белки - ферменты. В основе механизма работы многих ферментов лежит соответствие его пространственной структуры и пространственных структур реагирующих веществ по принципу «ключа» - «замочной скважины». Как правило, ферменты являются высокоспецифичными и обеспечивают только одну или несколько однотипных реакций.

Все химические реакции делятся на два типа: обратимые и необратимые. Необратимые реакции протекают только в одном направлении – образование продуктов реакции и идут до полного

расходования хотя бы одного из реагирующих веществ.

В ходе обратимых реакций ни одно из реагирующих веществ не расходуется полностью. Обратимыми называют реакции, которые одновременно протекают в прямом и обратном направлении.

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием. В равновесном состоянии прямая и обратная реакции не прекращаются. Но так как их скорости при этом равны, то видимых изменений в системе не происходит: концентрации всех реагирующих веществ остаются постоянными. Изучение термодинамики обратимых и необратимых химических реакций показало, что динамическое равновесие обратимых реакций может быть смещено, и направление этого смещения определяется принципом французского ученого Ле-Шателье. Если на систему, находящуюся в состоянии динамического равновесия оказать внешнее воздействие (изменить концентрацию, температуру, давление), то равновесие смещается в сторону той реакции, которая противодействует этому воздействию. На этом принципе базируется саморегуляция равновесия не только химических реакций, но и любых других открытых систем.


Во многих химических реакциях сначала образуется небольшое вещество активных атомов или свободных радикалов, быстро реагирующих с молекулами исходных веществ, затем они снова образуются так, что их концентрация не меняется. Получается, что одна такая частица может вызвать цепь повторяющихся неразветвленных и разветвленных реакций (цепных реакций).

Кинетика и термодинамика различных типов химических реакций легли в основу таких направлений современной химии, как химическая эволюция и самоуправляемые сложные химические реакции. Создавая комплекс определенных физических условий, источников энергии и катализаторов, можно добиться того, что смесь определенных простых веществ путем последовательности неконтролируемых человеком химических реакций с образованием промежуточных соединений, придет к созданию нужного нам конечного продукта. Таким образом, в условиях ультрафиолетового облучения периодических электрических разрядов, из смеси водорода, аммиака, метана, окиси углерода, углекислого газа, сероводорода и минимальных количеств кислорода, удалось получить самопроизвольный синтез аминокислот, сахаров, азотистых оснований и более сложных органических соединений. Например - предшественники ферментов и хлорофилл растений. Все это в принципе доказывает возможность появления сложных органических соединений из неорганических простых веществ путем самопроизвольной химической эволюции.

Тема 3. Общие закономерности химических процессов.

Химическая термодинамика и кинетика

Введение

Центральным в химии является учение о превращении веществ, в том числе об энергетике и кинетике химических реакций. Усвоение этого учения позволяет предсказывать возможность и направление химических процессов, рассчитывать энергетические эффекты и энергозатраты, скорость получения и выход продуктов в реакции, воздействовать на скорость химических процессов, а также предупреждать нежелательные реакции в тех или иных устройствах, установках и приборах.

3.1. Химическая термодинамика и кинетика

Обмен энергией между изучаемой системой и внешней средой описывают законы, которые изучает термодина­мика. Применение законов термодинамики в химии по­зволяет решить вопрос о принципиальной возможности различных процессов, условиях их осуществления, опре­ делить степень превращения реагирующих веществ в хи­ мических реакциях и оценить их энергетику.

Химическая термодинамика , рассматривает взаимосвязи между работой и энергией применительно к химическим превращениям.

Тепловая и механическая энергия - алгебраические величины. Знаки величин Q и А в термодинамике рас­ сматриваются по отношению к системе. Энергия, получа­ емая системой, обозначается знаком « + », отданная си­ стемой - знаком « - ».

Переменные величины, определяющие состояние си­ стемы, называются параметрами состояния. Среди них в химии наиболее часто используются давление, темпера­тура, объем, состав системы. Состояние системы и про­ исходящие в ней изменения характеризуются также с по­мощью функций состояния, зависящих от параметров состояния и не зависящих от пути перехода системы из одного состояния в другое. К ним относятся внутренняя энергия, энтальпия, энтропия, изобарно-изотермический потенциал и др.

Процессы, протекающие при постоянном давлении,- изобарные, при постоянном объеме - изохорные, при по­стоянной температуре - изотермические. Большинство химических реакций протекают в открытых сосудах, т. е. при постоянном давлении, равном атмосферному.

Химическая кинетика изучает характеристики химического процесса, как скорость реакции и зависимость её от внешних условий.

3.2. Энергетика химических процессов

В процессе химической реакции происходит разрыв одних химических связей и образование новых. Этот про­цесс сопровождается выделением или поглощением тепло­ ты, света или другого вида энергии. Энергетические эф­ фекты реакций изучает наука термохимия. В термохимии пользуются термохимическими уравнениями реакций, ко торые учитывают:

    агрегатное состояние вещества;

    тепловой эффект реакции(Q).

В этих уравнениях часто используют дробные коэффи­циенты. Так, уравнения реакции образования 1 моля газо- образной воды записывается так:

Н 2(г) +1/2О 2(г) = Н 2 О (г) + 242 кДж (*)

Значок (г) указывает на то, что водород, кислород и вода находятся в газовой фазе. «+242 кДж» - означает, что в результате этой реакции выделяется столько теплоты при образовании 1 моль воды.

Важность учета агрегатного состояния связана с тем, что теплота образования жидкой воды больше на величину теплоты, которая выделяется при конденсации пара:

Н 2(г) +1/2О 2(г) = Н 2 О (ж) + 286 кДж (**)

Процесс конденсации:

Н 2 О (г) = Н 2 О (ж) + 44 кДж (***)

Кроме теплового эффекта, в термодинамике использу­ ют понятие "изменение теплосодержания" - энтальпии (запаса внутренней энергии) в процессе реакции (Н)

Экзотермические реакции: теплота выделяется Q > 0

запас внутренней энергии уменьшается Н<0

Эндотермические реакции: теплота поглощается Q < 0

запас внутренней энергии увеличивается Н>0.

Так, реакция (*) образования воды экзотермическая. Тепловой эффект реакции: Q = 242 кДж, Н = -242 кДж.

Энтальпия образования химических соединений

Стандартной энтальпией (теплотой) образования химического соединения  Н 0 f ,В,298 называют изменение энтальпии в процессе образования одного моля этого соединения, находящегося в стандартном состоянии(р=1 атм; Т=25 0 С), из простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых при данной температуре фазах и модификациях.

Стандартные энтальпии образования простых веществ принимают равными нулю, если их агрегатные состояния и модификации устойчивы при стандартных условиях.

Стандартные энтальпии образования веществ собраны и сведены в справочниках.

3.2. 1. Термохимические расчеты

Независимость теплоты химической реакции от пути процесса при p=const была установлена в первой половине XIXв. русским ученым Г.И. Гессом: тепловой эффект химической реакции не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции.



Для большинства реакций изменение теплового эффекта в пределах температур, имеющих практическое значение невелико. Поэтому в дальнейшем будут использоваться  Н 0 f ,В,298 и в расчетах считаться постоянными.

Следствие из закона Гесса тепловой эффект химической реакции равен сумме теплот (энтальпий) образования продуктов реакции за вычетом суммы теплот (энтальпий) образования исходных веществ .

Используя при термохимических расчетах следствие из закона Гесса, надо иметь в виду, что при алгебраическом суммировании следует учитывать стехиометрические коэффициенты в уравнении реакции.

Так, для уравнения реакции аА+вВ=сС+dD тепловой эффект  Н равен

Н=(с Н обр.С +d Н обр.D) – (а Н обр.А +в Н обр.В) (*)

Уравнение (*) позволяет определить как тепловой эффект реакции по известным энтальпиям образования веществ, участвующих в реакции, так и одну из энтальпий образования, если известны тепловой эффект реакции и все остальные энтальпии образования.

Теплота сгорания топлива

Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества
.

Пример: определить теплоту сгорания этанола С 2 Н 5 ОН (ж)

Если расчет ведется для
с образованием жидкой воды , то теплота сгорания называется высшей , если с образованием газообразной воды, то низшей . По умолчанию обычно имеют в виду высшую теплоту сгорания.

В технических расчетах используют удельную теплоту сгорания Q Т, которая равна количеству теплоты, выделяющейся при сгорании 1 кг жидкого или твердого вещества или 1м 3 газообразного вещества, тогда

Q Т = -  Н СТ  1000/М (для ж, тв.)

Q Т = –  Н СТ  1000/22,4 (для г.),

где М – масса моля вещества, 22,4 л – объем моля газа.

3.3. Химическое и фазовое равновесие

3.3.1. Химическое равновесие

Обратимые реакции - химические реакции, протекающие одновременно в двух противоположных направлениях.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V 1 ) равна скорости обратной реакции (V 2 ). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K 1 ) и обратной (K 2 ) реакций.

Для реакции mA + nB « pC + dD константа равновесия равна

K = K 1 / K 2 = ([C] p [D] d ) / ([A] m [B] n )

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

Способы смещения равновесия

Принцип Ле-Шателье. Если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие

V 1

A + Б

V 2

    Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).

V 1

A + Б

; увеличение P приводит к V 1 > V 2

V 2

    Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты)

V 1

A + Б

В + Q, то увеличение t ° C приводит к V 2 > V 1

V 2

V 1

A + Б

В - Q, то увеличение t ° C приводит к V 1 > V 2

V 2

    Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V 1 > V 2 .

    Катализаторы не влияют на положение равновесия.

3.3.2. Фазовые равновесия

Равновесие процесса перехода вещества из одной фазы в другую без изменения химического состава называется фазовым равновесием.

Примеры фазового равновесия:

Твердое вещество............Жидкость

Жидкость....................Пар

3.3.3. Скорость реакции и методы ее регулирования

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± (С 2 – С 1 ) / (t 2 - t 1 )= ± D С / D t

где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) – если скорость определяется по продукту реакции, знак (–) – по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.

Факторы, влияющие на скорость химических реакций

    Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

Примеры: Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.

Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

    Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.

Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

aA + bB + . . . ® . . .

V = k [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.

Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

    Температура. При повышении температуры на каждые 10 ° C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:

(t 2 - t 1 ) / 10

Vt 2 / Vt 1

= g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g - температурный коэффициент данной реакции).

Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

k = A e –Ea/RT

где

A - постоянная, зависящая от природы реагирующих веществ;

R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Энергетическая диаграмма химической реакции.

Экзотермическая реакция

Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.

Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

  1. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

3.3.4. Механизмы химических реакций, колебательные реакции

Классификация химических реакций

I . По числу и составу исходных веществ и продуктов реакции:

1) Реакции соединения - это реакции, в ходе которых из двух или нескольких веществ образуется одно вещество более сложного состава. Реакции соединения простых веществ всегда являются окислительно-восстановительными реакциями. В реакциях соединения могут участвовать и сложные вещества.

2) Реакции разложения - реакции, при протекании которых из одного сложного вещества образуются два или несколько более простых веществ.
Продуктами разложения исходного вещества могут быть как простые, так и сложные вещества.

Реакции разложения обычно протекают при нагревании веществ и являются эндотермическими реакциями. Как и реакции соединения, реакции разложения могут протекать с изменением или без изменения степеней окисления элементов;

3) Реакции замещения - это реакции между простыми и сложными веществами, при протекании которых атомы простого вещества замещают атомы одного из элементов в молекуле сложного вещества в результате реакции замещения образуются новое простое и новое сложное вещество.
Эти реакции почти всегда являются окислительно-восстановительными реакциями.

4) Реакции обмена - это реакции между двумя сложными веществами, молекулы которых обмениваются своими составными частями.
Реакции обмена всегда протекают без переноса электронов, т. е. не являются окислительно-восстановительными реакциями.

II . По признаку изменения степени окисления

1) Реакции, которые идут без изменения степени окисления - реакции нейтрализации

2) С изменением степени окисления

III . В зависимости от присутствия катализатора

1) Некаталитические (идут без присутствия катализатора);

2) Каталитические (идут с присутствием катализатора)

IV . По признаку теплового эффекта

1) Экзотермические (с выделением теплоты):

2) Эндотермические (с поглощением теплоты):

V . По признаку обратимости

1) Необратимые (протекают только в одном направлении):

2) Обратимые (протекающие одновременно в прямом и обратном направлении):

VI . По признаку однородности

1) Гомогенные (протекающие в однородной системе):

2) Гетерогенные (протекающие в неоднородной системе):

По механизму протекания все реакции можно подразделить на простые и сложные. Простые реакции протекают в одну стадию и называются одностадийными.

Сложные реакции идут либо последовательно (многостадийные реакции), либо параллельно, либо последовательно–параллельно.

В каждой стадии реакции может участвовать одна молекула (мономолекулярные реакции), две молекулы (бимолекулярные реакции) и три молекулы (тримолекулярные реакции).

Колебательные реакции - класс химических реакций, протекающих в колебательном режиме, при котором некоторые параметры реакции (цвет, концентрация компонентов, температура и др.) изменяются периодически, образуя сложную пространственно-временную структуру реакционной среды.


(Система бромат-малоновая кислота-церий реакция Белоусова-Жаботинского)

3.4. Катализ

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами .

Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений.

При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии).

При гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях).

Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление " отрицательного катализа ").