Тесты по дисциплине «Теория вероятностей и математическая статистика. Тест по предмету «Теория вероятности и математическая статистика Тесты по теории вероятности онлайн

ТЕСТ №1

Тема: Виды случайных событий, классическое определение вероятности,

элементы комбинаторики.

Вам предлагается 5 тестовых заданий по теме виды случайных событий, классическое определение вероятности, элементы комбинаторики. Среди предлагаемых вариантов ответов только один является верным.

Задание

Предлагаемые варианты ответов

Если появление события А влияет на значение вероятности события В, то про события А и В говорят, что они …

    совместные;

    несовместные;

    зависимые;

    независимые.

На гирлянде висят 5 флажков разного цвета. Посчитать количество возможных комбинаций из них, можно используя:

    формулу числа размещений;

    формулу числа перестановок;

    формулу числа сочетаний;

Среди поступивших в кассу 100 купюр – 8 фальшивых. Кассир наудачу вынимает одну купюру. Вероятность того, что эту купюру примут в банке, равна:

В 25 местный автобус входят 4 пассажира. Они могут занять какие угодно места в автобусе. Количество способов расположения этих людей в автобусе рассчитывается по формуле:

    числа перестановок;

    числа сочетаний;

    числа размещений;

Игральная кость брошена один раз. Выпадение числа «4» на верхней грани, является:

    достоверным событием;

    невозможным событием;

    случайным событием.

ТЕСТ №2

Тема: Теоремы сложения и умножения вероятностей.

Вам предлагается 5 тестовых заданий по теме теоремы сложения и умножения вероятностей. Среди предлагаемых вариантов ответов только один является верным.

Задание

Предлагаемые варианты ответов

Событие состоящее в том, что произойдет либо событие А , либо событие В можно обозначить:

    А–В ;

  1. А В ;

    Р А (В) .

Формула Р(А+В) = Р(А) + Р(В) , соответствует теореме сложения вероятностей:

    зависимых событий;

    независимых событий;

    совместных событий;

    несовместных событий.

Вероятность промаха для торпедного катера равна . Катер произвел 6 выстрелов. Вероятность того, что все 6 раз катер попал в цель, равна:

Вероятность совместного появления событий А и В обозначают:

Дана задача: в первом ящике – 5 белых и 3 красных шара, во втором – 3 белых и 10 красных шаров. Из каждого ящика наудачу взяли по одному шару. Определить вероятность того, что оба шара одного цвета. Для решения задачи используют:

    Теорему умножения вероятностей несовместных событий и теорему сложения вероятностей независимых событий.

    Теорему сложения вероятностей несовместных событий;

    Теорему умножения вероятностей независимых событий и теорему сложения вероятностей несовместных событий;

    Теорему умножения вероятностей зависимых событий;

ТЕСТ №3

Тема: Случайные независимые испытания по схеме Бернулли.

Вам предлагается 5 тестовых заданий по теме случайные независимые испытания по схеме Бернулли. Среди предлагаемых вариантов ответов только один является верным.

Предлагаемые варианты ответов

Дана задача: Вероятность того, что на странице студенческого реферата есть опечатка, равна 0,03. Реферат состоит из 8 страниц. Определить вероятность того, что ровно 5 из них с опечаткой.

    Формулу Бернулли;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона.

В семье планируют завести 5 детей. Если считать вероятность рождения мальчика 0,515, то – наивероятнейшее число девочек в семье равно:

Имеется группа, состоящая из 500 человек. Найти вероятность того, что у двух человек день рождения придется на Новый год. Считать, что вероятность рождения в фиксированный день равна .

Для решения этой задачи используют:

    Формулу Бернулли;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона.

Для определения вероятности того, что в 300 испытаниях событие А произойдет не менее 40 раз, если вероятность А в каждом испытании постоянна и равна 0,15, используют:

    Формулу Бернулли и теорему сложения вероятностей несовместных событий;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона, теорему сложения вероятностей несовместных событий, свойство вероятностей противоположных событий.

Дана задача: известно, что в некоторой местности в сентябре бывает 18 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце семи дней два дня окажутся дождливыми?

Для решения этой задачи используют:

    Формулу Бернулли;

    Локальную теорему Лапласа;

    Интегральную теорему Лапласа;

    Формулу Пуассона.

ТЕСТ №4

Тема: Одномерные случайные величины.

Вам предлагается 5 тестовых заданий по теме одномерные случайные величины, их способы задания и числовые характеристики. Среди предлагаемых вариантов ответов только один является верным.

Основные понятия по теме:

1. Испытание, элементарный исход, исход испытания, событие.

2. Достоверное событие, невозможное событие, случайное событие.

3. Совместные события, несовместные события, равносильные события, равновозможные события, единственно возможные события.

4. Полная группа событий, противоположные события.

5. Элементарное событие, составное событие.

6. Сумма нескольких событий, произведение нескольких событий. Их геометрическая интерпретация

1. В задаче « Производится два выстрела по мишени. Найти вероятность того, что мишень будет поражена один раз» испытанием является:

1)* производится два выстрела по мишени;

2) мишень будет поражена один раз;

3) мишень будет поражена два раза.

2. Бросают монету. Событие: А – «выпадет герб». Cобытие – «выпадет цифра» является:

1) случайным;

2) достоверным;

3) невозможным;

4)* противоположным.

3. Подбрасывается игральный кубик. Обозначим события: А - «выпадение 6 очков», В - «выпадение 4 очков», D - «выпадение 2 очков», С - «выпадение четного числа очков». Тогда событие С равно

1)
;

2)
;

3)*
;

4)
.

4. Студент должен сдать два экзамена. Событие А - « студент сдал первый экзамен», событие В - «студент сдал второй экзамен», событие С - «студент сдал оба экзамена». Тогда событие С равно

1)*
;

2)
;

3)
;

4)
.

5. Из букв слова «ЗАДАЧА» наугад выбирается одна буква. Событие - «выбрана буква К» является

1) случайным;

2) достоверным;

3)* невозможным;

4) противоположным.

6. Из букв слова «МИР» наугад выбирается одна буква. Событие - «выбрана буква М» является

1)* случайным;

2) достоверным;

3) невозможным.

7. Событие - «из урны, содержащей только белые шары, извлекают белый шар» является

1) случайным;

2)* достоверным;

3) невозможным.

8. Два студента сдают экзамен. События: А - «экзамен сдаст первый студент», В - «экзамен сдаст второй студент» являются

1) несовместными;

2) достоверными;

3) невозможными;

4)*совместными.

9. События называют несовместными, если

4)* наступление одного исключает возможность появления другого.

10. События называют единственно возможными, если

1) наступление одного не исключает возможность появления другого;

2) при осуществлении комплекса условий каждое из них имеет равную возможность наступить;

3)* при испытании обязательно наступит хотя бы одно из них;

Тема 2. Классическое определение вероятности

Основные понятия по теме:

1. Вероятность события, классическое определение вероятности случайного события.

2. Исход, благоприятствующий событию.

3. Геометрическое определение вероятности.

4. Относительная частота события.

5. Статистическое определение вероятности.

6. Свойства вероятности.

7. Способы подсчета числа элементарных исходов: перестановки, сочетания, размещения.

Применение всех этих понятий на практических примерах.

Примерные тестовые задания, предлагаемые в этой теме:

1. События называют равновозможными, если

1) они несовместны;

2)* при осуществлении комплекса условий каждое из них имеет равную возможность наступить;

3) при испытании обязательно наступит хотя бы одно из них;

4) наступление одного исключает возможность появления другого.

2. Испытание - «бросают две монеты». Событие - «хотя бы на одной из монет выпадет герб». Число элементарных исходов, благоприятствующих данному событию равно:

4) четыре.

3. Испытание - «бросают две монеты». Событие - «на одной из монет выпадет герб». Число всех элементарных, равновозможных, единственно возможных, несовместных исходов равно:

4)* четыре.

4. В урне 12 шаров, ничем, кроме цвета, не отличающихся. Среди этих шаров 5 черных и 7 белых. Событие - «случайным образом извлекают белый шар». Для этого события число благоприятствующих исходов равно:

5. В урне 12 шаров, ничем, кроме цвета, не отличающихся. Среди этих шаров 5 черных и 7 белых. Событие - «случайным образом извлекают белый шар». Для этого события число всех исходов равно:

6. Вероятность события принимает любое значение из промежутка:

3)
;

4)
;

5)*
.

7. Абонент забыл две последних цифры телефонного номера и, зная, лишь, что они различны, набрал их наудачу. Сколькими способами он это может сделать?

1);

2)*;

Вариант№1

  1. В партии из 800 кирпичей есть 14 бракованных. Мальчик выбирает наугад один кирпич из этой партии и бросает его с восьмого этажа стройки. Какова вероятность, что брошенный кирпич окажется бракованным?
  2. Экзаменационный сборник по физике для 11 класса состоит из 75 билетов. В 12 из них встречается вопрос о лазерах. Какова вероятность, что ученик Степа, выбирая билет наугад, наткнется на вопрос о лазерах?
  3. На чемпионате по бегу на 100 м выступают 3 спортсмена из Италии, 5 спортсменов из Германии и 4 - из России. Номер дорожки для каждого спортсмена определяется жеребьевкой. Какова вероятность, что на второй дорожке будет стоять спортсмен из Италии?
  4. В магазин завезли 1500 бутылок водки. Известно, что 9 из них - просроченные. Найти вероятность того, что алкоголик, выбирающий одну бутылку наугад, в итоге купит именно просроченную.
  5. В городе работают 120 офисов различных банков. Бабуля выбирает один из этих банков наугад и открывает в нем вклад на 100 000 рублей. Известно, что во время кризиса 36 банков разорились, и вкладчики этих банков потеряли все свои деньги. Какова вероятность того, что бабуля не потеряет свой вклад?
  6. За одну 12-часовую смену рабочий изготавливает на станке с числовым программным управлением 600 деталей. Из-за дефекта режущего инструмента на станке получено 9 бракованных деталей. В конце рабочего дня мастер цеха берет одну деталь наугад и проверяет ее. Какова вероятность, что ему попадется именно бракованная деталь?

Зачет по теме: «Теория вероятности в задачах ЕГЭ»

Вариант№1

  1. На Киевском вокзале в Москве работают 28 окон билетных касс, рядом с которыми толпятся 4000 пассажиров, желающих купить билеты на поезд. По статистике, 1680 из этих пассажиров неадекватны. Найти вероятность того, что кассиру, сидящему за 17-м окном, попадется неадекватный пассажир (учитывая, что пассажиры выбирают кассу наугад).
  2. Банк «Русский стандарт» проводит лотерею для своих клиентов - держателей карт Visa Classic и Visa Gold. Будет разыграно 6 автомобилей Opel Astra, 1 автомобиль Porsche Cayenne и 473 телефона iPhone 4. Известно, что менеджер Вася оформил карту Visa Classic и стал победителем лотереи. Какова вероятность, что он выиграет автомобиль Opel Astra, если приз выбирается наугад?
  3. Во Владивостоке отремонтировали школу и поставили 1200 новых пластиковых окон. Ученик 11-го класса, который не хотел сдавать ЕГЭ по математике, нашел на газоне 45 булыжников и начал кидать их в окна наугад. В итоге, он разбил 45 окон. Найти вероятность того, что окно в кабинете директора окажется не разбитым.
  4. На американский военный завод поступила партия из 9000 поддельных микросхем китайского производства. Эти микросхемы устанавливаются в электронные прицелы для винтовки M-16. Известно, что 8766 микросхем в указанной партии неисправны, и прицелы с такими микросхемами будут работать неправильно. Найти вероятность того, что наугад выбранный электронный прицел работает правильно.
  5. Бабуля хранит на чердаке своего загородного дома 2400 банок с огурцами. Известно, что 870 из них давно протухли. Когда к бабуле приехал внучек, она подарила ему одну банку из своей коллекции, выбирая ее наугад. Какова вероятность того, что внучек получил банку с тухлыми огурцами?
  6. Бригада из 7 строителей-мигрантов предлагает услуги по ремонту квартир. За летний сезон они выполнили 360 заказов, причем в 234 случаях не убрали строительный мусор из подъезда. Коммунальные службы выбирают одну квартиру наугад и проверяют качество ремонтных работ. Найти вероятность того, что сотрудники коммунальных служб не наткнутся при проверке на строительный мусор.

Ответы:

Вар№1

ответ

0,0175

0,16

0,25

0,006

0,015

Вар №2

ответ

0,42

0,0125

0,9625

0,026

0,3625

0,35

Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: "выбранный шар оказался синего цвета"
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

Вариант 1.

    Под случайным событием, связанным с некоторым опытом, понимается всякое событие, которое при осуществлении этого опыта

а) не может произойти;

б) либо происходит, либо нет;

в) обязательно произойдет.

    Если событие А происходит тогда и только тогда, когда происходит событие В , то их называют

а) равносильными;

б) совместными;

в) одновременными;

г) тождественными.

    Если полная система состоит из 2-х несовместных событий, то такие события называются

а) противоположными;

б) несовместными;

в) невозможными;

г) равносильными.

    А 1 – появление четного числа очков. Событие А 2 - появление 2-х очков. Событие А 1 А 2 состоит в том, что выпало

а) 2; б) 4; в) 6; г) 5.

    Вероятность достоверного события равна

а) 0; б) 1; в) 2; г) 3.

    Вероятность произведения двух зависимых событий А и В вычисляется по формуле

а) Р(А В) = Р(А) Р(В); б) Р(А В) = Р(А)+Р(В) – Р(А) Р(В);

в) Р(А В) = Р(А)+Р(В) + Р(А) Р(В); г) Р(А В) = Р(А) Р(А | В).

    Из 25 экзаменационных билетов, занумерованных числами от 1 до 25, студент наудачу извлекает 1. Какова вероятность того, что студент сдаст экзамен, если он знает ответы на 23 билета?

а) ; б) ; в) ; г) .

    В коробке 10 шаров: 3 белых, 4 черных, 3 синих. Наудачу вытащили 1 шарик. Какова вероятность, что он будет либо белым, либо черным?

а) ; б) ; в) ; г) .

    Имеется 2 ящика. В первом 5 стандартных и 1 нестандартная деталь. Во втором 8 стандартных и 2 нестандартные детали. Из каждого ящика наудачу вынимают по одной детали. Какова вероятность того, что вынутые детали окажутся стандартными?

а) ; б) ; в) ; г) .

    Из слова «математика » выбирается наугад одна буква. Какова вероятность того, что эта буква «а »?

а) б) ; в) ; г) .

Вариант 4.

    Если событие в данном опыте не может произойти, то оно называется

а) невозможным;

б) несовместным;

в) необязательным;

г) недостоверным.

    Опыт с подбрасыванием игральной кости. Событие А выпадает число очков не большее 3. Событие В выпадает четное число очков. Событие А В состоит в том, что выпала грань с номером

а) 1; б) 2; в) 3; г) 4.

    События, образующие полную систему попарно несовместных и равновероятных событий называются

а) элементарными;

б) несовместными;

в) невозможными;

г) достоверными.

а) 0; б) 1; в) 2; г) 3.

    В магазин поступило 30 холодильников. 5 из них имеют заводской дефект. Случайным образом выбирается один холодильник. Какова вероятность, что он будет без дефекта?

а) ; б); в) ; г) .

    Вероятность произведения двух независимых событий А и В вычисляется по формуле

а) Р(А В) = Р(А) Р(В | А); б) Р(А В) = Р(А) + Р(В) – Р(А) Р(В);

в) Р(А В) = Р(А) + Р(В) + Р(А) Р(В); г) Р(А В) = Р(А) Р(В).

    В классе 20 человек. Из них 5 отличников, 9 хорошистов, 3 имеют тройки и 3 имеют двойки. Какова вероятность того, что выбранный случайно ученик либо хорошист, либо отличник?

а) ; б) ; в) ; г) .

9. В первой коробке 2 белых и 3 черных шара. Во второй коробке 4 белых и 5 черных шаров. Наудачу извлекают из каждой коробке по одному шару. Какова вероятность того, что оба шара окажутся белыми?

а) ; б) ; в) ; г) .

10. Вероятность достоверного события равна

а) 0; б) 1; в) 2; г) 3.

Вариант 3.

    Если в данном опыте никакие два из событий не могут произойти одновременно, то такие события называются

а) несовместными;

б) невозможными;

в) равносильными;

г) совместными.

    Совокупность несовместных событий таких, что в результате опыта должно произойти хотя бы одно из них называются

а) неполной системой событий; б) полной системой событий;

в) целостной системой событий; г) не целостной системой событий.

    Произведением событий А 1 и А 2

а) происходит событие А 1 , событие А 2 не происходит;

б) происходит событие А 2 , событие А 1 не происходит;

в) события А 1 и А 2 происходят одновременно.

    В партии из 100 деталей 3 бракованных. Какова вероятность того, что взятая наудачу деталь окажется бракованной?

а)
; б) ; в)
;
.

    Сумма вероятностей событий образующих полную систему равна

а) 0; б) 1; в) 2; г) 3.

    Вероятность невозможного события равна

а) 0; б) 1; в) 2; г) 3.

    А и В вычисляется по формуле

а) Р(А+В) = Р(А) + Р(В); б) Р(А+В) = Р(А) + Р(В) – Р(А В);

в) Р(А+В) = Р(А) + Р(В) + Р(А В); г) Р(А+В) = Р(А В) – Р(А) + Р(В).

    На полке в произвольном порядке расставлено 10 учебников. Из них 1 по математике, 2 по химии, 3 по биологии и 4 по географии. Студент произвольно взял 1 учебник. Какова вероятность того, что он будет либо по математике, либо по химии?

а) ; б) ; в) ; г) .

а) несовместными;

б) независимыми;

в) невозможными;

г) зависимыми.

    В двух коробках находятся карандаши одинаковой величины и формы. В первой коробке: 5 красных, 2 синих и 1 черный карандаш. Во второй коробке: 3 красных, 1 синий и 2 желтых. Наудачу извлекают по одному карандашу из каждой коробки. Какова вероятность того, что оба карандаша будут синими?

а) ; б) ; в) ; г) .

Вариант 2.

    Если событие происходит в данном опыте обязательно, то оно называется

а) совместным;

б) реальным;

в) достоверным;

г) невозможным.

    Если появление одного из событий не исключает появление другого в одном и том же испытании, то такие события называются

а) совместными;

б) несовместными;

в) зависимыми;

г) независимыми.

    Если наступление события В не оказывает ни какого влияния на вероятность наступления события А, и наоборот, наступление события А не оказывает ни какого влияния на вероятность наступления события В, то события А и В называются

а) несовместными;

б) независимыми;

в) невозможными;

г) зависимыми.

    Суммой событий А 1 и А 2 называется событие, которое осуществляется в том случае, когда

а) происходит хотя бы одно из событий А 1 или А 2 ;

б) события А 1 и А 2 не происходят;

в) события А 1 и А 2 происходят одновременно.

    Вероятность любого события есть неотрицательное число, не превосходящее

а) 1; б) 2; в) 3; г) 4.

    Из слова «автоматика » выбирается наугад одна буква. Какова вероятность того, что это будет буква «а »?

а) ; б) ; в) ; г) .

    Вероятность суммы двух несовместных событий А и В вычисляется по формуле

а) Р(А+В) = Р(А) + Р(В); б) Р(А+В) = Р(А В) – Р(А) + Р(В);

в) Р(А+В) = Р(А) + Р(В) + Р(А В); г) Р(А+В) = Р(А) + Р(В) – Р(А В).

    В первой коробке 2 белых и 5 черных шаров. Во второй коробке 2 белых и 3 черных шара. Из каждой коробки наудачу вынули по 1 шару. Какова вероятность, что оба шара окажутся черными?

а) ; б) ; в) ; г) .