Взаимодействие генов. Комплементарное взаимодействие генов Формами взаимодействия неаллельных генов являются

Комплементарным называется такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары дополняется действием гена из другой аллельной пары, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия – наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный – результат взаимодействия двух рецессивных неаллельных генов а abb ; ореховидный – результат взаимодействия двух доминантных неаллельных генов A - B -; розовидный и гороховидный – c генотипами A - bb и aaB - , соответственно.

Другой пример – наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один – черный. В основе формирования той или иной окраски шерсти лежит взаимодействие двух пар неаллельных генов:

A ген, определяющий синтез пигмента;

a ген, не определяющий синтез пигмента;

B ген, определяющий неравномерное распределение пигмента;

b ген, определяющий равномерное распределение пигмента.

Примеры комплементарного взаимодействия у человека: ретинобластома и нефробластома кодируются двумя парами неаллельных генов.

Возможные варианты расщепления в F 2 при комплементарном взаимодействии: 9:3:4; 9:3:3:1; 9:7.

Эпистаз

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.

Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С – ген, определяющий окраску оперения (обычно пеструю),

с – ген, не определяющий окраску оперения,

I – ген, подавляющий окраску,

i – ген, не подавляющий окраску.

Варианты расщепления в F 2: 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.

Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген I B , однако его действие было подавлено двумя рецессивными эпистатическими генами dd.

Полимерия

Полимерия - такой вид взаимодействия неаллельных генов, при котором несколько неаллельных генов определяют один и тот же признак, усиливая его проявление. Это явление противоположно плейотропии. По типу полимерии обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления в природе.

Например, окраска зерен у пшеницы определяется двумя парами неаллельных генов:

A 1

a 1 – ген, не определяющий красную окраску;

A 2 – ген, определяющий красную окраску;

a 2 – ген, не определяющий красную окраску.

A 1 A 1 A 2 A 2 генотип растений с красной окраской зерен;

a 1 a 1 a 2 a 2 - генотип растений с белой окраской зерен.

Расщепление в F 2: 15:1 или 1:4:6:4:1.

У человека по типу полимерии наследуются такие признаки, как рост, цвет волос, цвет кожи, величина артериального давления, умственные способности.

Передача признаков из поколения в поколение обусловлена взаимодействием между собой различных генов. Что такое ген, и какие же есть виды взаимодействия между ними?

Что такое ген?

Под геном в настоящее время, подразумевают единицу передачи наследственной информации. Гены находятся в ДНК и образуют ее структурные участки. Каждый ген отвечает за синтез определенной белковой молекулы, которая и обуславливает проявление того или иного признака у человека.

Каждый ген имеет несколько подвидов или аллелей, которые и обуславливают разнообразие признаков (например, карий цвет глаз обусловлен доминантной аллелью гена, в то время как голубой цвет является рецессивным признаком). Аллели расположены в одинаковых участках и передача той или иной хромосомы обуславливает проявление того или иного признака.

Все гены взаимодействуют между собой. Существует несколько видов их взаимодействия - аллельное и неаллельное. Соответственно, выделяют взаимодействие аллельных и неаллельных генов. Чем же они отличаются между собой и как проявляются?

История открытия

До того как были открыты типы взаимодействия неаллельных генов, было принято считать, что возможно только (если есть доминантный ген, то признак проявится; если же его нет, то и признака не будет). Преобладало учение об аллельном взаимодействии, которое долгое время являлось основным догматом генетики. Доминирование тщательно исследовалось, и были открыты такие его типы, как полное и неполное доминирование, кодоминирование и сверхдоминирование.

Все данные принципы подчинялись первому который гласил о единообразии гибридов первого поколения.

При дальнейшем наблюдении и исследовании было замечено, что не все признаки подстраивались под теорию доминирования. При более глубоком изучении было доказано, что не только одинаковые гены влияют на проявление признака или группы свойств. Таким образом и были открыты формы взаимодействия неаллельных генов.

Реакции между генами

Как было сказано, долгое время преобладало учение о доминантном наследовании. В данном случае имело место аллельное взаимодействие, при котором признак проявлялся только в гетерозиготном состоянии. После того как были открыты различные формы взаимодействия неаллельных генов, ученые получили возможность объяснить доселе необъяснимые типы наследования и получить ответы на многие вопросы.

Было выяснено, что генное регулирование напрямую зависело от ферментов. Данные ферменты позволяли генам вступать в реакции по-разному. При этом взаимодействие аллельных и неаллельных генов протекало по одним и тем же принципам и схемам. Это позволило сделать вывод о том, что наследование не зависит от условий, в которых гены взаимодействуют, а причина атипичной передачи признаков кроется в самих генах.

Неаллельное взаимодействие является уникальным, что позволяет получать новые комбинации признаков, обуславливающие новую степень выживания и развития организмов.

Неаллельные гены

Неаллельными называют те гены, что локализуются в различных участках негомологичных хромосом. Функция синтеза у них одна, однако кодируют они образование различных белков, обуславливающих разные признаки. Такие гены, реагируя между собой, могут обуславливать развитие признаков в нескольких комбинациях:

  • Один признак будет обусловлен взаимодействием нескольких, совершенно разных по строению генов.
  • Несколько признаков будут зависеть от одного гена.

Реакции между данными генами протекают несколько сложнее, чем при аллельном взаимодействии. Однако каждый из данных видов реакций обладает собственными чертами и особенностями.

Какие же есть типы взаимодействия неаллельных генов?

  • Эпистаз.
  • Полимерия.
  • Комплементарность.
  • Действие модификаторных генов.
  • Плейотропное взаимодействие.

Каждый из этих типов взаимодействия имеет свои уникальные свойства и проявляется по-своему.

Следует остановиться поподробнее на каждом из них.

Эпистаз

Данное взаимодействие неаллельных генов - эпистаз - наблюдается в том случае, когда один ген подавляет активность другого (подавляющий ген носит название эпистатичного, а подавляемый - гипостатичного гена).

Реакция между данными генами может быть доминантной и рецессивной. Доминантный эпистаз наблюдается в случае, когда эпистатический ген (обычно он обозначается буквой I, если не имеет внешнего, фенотипического проявления) подавляет гипостатический ген (его обычно обозначают В или b). Рецессивный эпистаз наблюдается тогда, когда рецессивная аллель эпистатического гена угнетает проявление любой из аллелей гипостатическогот гена.

Расщепление по фенотипическому признаку, при каждом из видов этих взаимодействий, также отличается. При доминантном эпистазе чаще наблюдается следующая картина: во втором поколении по фенотипам разделение будет следующим - 13:3, 7:6:3 или 12:3:1. Все зависит от того, какие гены сойдутся.

При рециссивном эпистазе разделение такое: 9:3:4, 9:7, 13:3.

Комплементарность

Взаимодействие неаллельных генов, при котором при объединении доминантных аллелей нескольких признаков образуется новый, доселе не встречавшийся фенотип, и называется комплементарностью.

Например, наиболее часто этот тип реакции между генами встречается у растений (особенно у тыкв).

Если в генотипе растения имеется доминантная аллель А или В, то овощ получает сферическую форму. Если же генотип рециссивный, то форма плода обычно удлиненная.

При наличии в генотипе одновременно двух доминантных аллелей (А и В) тыква приобретает дисковидную форму. Если же и дальше проводить скрещивание (т.е. продолжать это взаимодействие неаллельных генов с тыквами чистой линии), то во втором поколении можно получить 9 особей с дисковидной формой, 6 - со сферической и одну тыкву удлиненной формы.

Подобное скрещивание позволяет получать новые, гибридные формы растений с уникальными свойствами.

У людей данный тип взаимодействия обуславливает нормальное развитие слуха (один ген - развитие улитки, другой - слухового нерва), а при наличии только одного доминантного признака проявляется глухота.

Полимерия

Часто в основе проявления признака лежит не наличие доминантной или рецессивной аллели гена, а их количество. Взаимодействие неаллельных генов - полимерия - является примером подобного проявления.

Полимерное действие генов может протекать с накопительным либо без него. При кумуляции степень проявления признака зависит от общего генного взаимодействия (чем больше генов, тем сильнее признак выражен). Потомство при подобном эффекте разделяется следующим образом - 1:4:6:4:1 (степень выраженности признака уменьшается, т.е у одной особи признак максимально выражен, у других наблюдается его угасание вплоть до полного исчезновения).

Если кумулятивного действия не наблюдается, то проявление признака зависит от доминантных аллелей. Если есть хотя бы одна такая аллель, признак будет иметь место. При подобном эффекте расщепление в потомстве протекает в соотношении 15:1.

Действие генов-модификаторов

Взаимодействие неаллельных генов, контролируемое действием модификаторов, наблюдается сравнительно редко. Пример такого взаимодействия следующий:


Подобное взаимодействие неаллельных генов у человека проявляется довольно редко.

Плейотропия

При данном типе взаимодействия один ген регулирует проявление или влияет на степень выраженности другого гена.

У животных плейотропия проявлялась следующим образом:

  • У мышей примером плейотропности является карликовость. Было замечено что при скрещивании фенотипически нормальных мышей в первом поколении все мышата оказались карликовыми. Был сделан вывод, что карликовость обуславливается рецессивным геном. Рецессивные гомозиготы переставали расти, наблюдалась недоразвитость их внутренних органов и желез. Данный ген карликовости влиял на развитие гипофиза у мышей, что и приводило к снижению синтеза гормонов и вызывало все последствия.
  • Платиновая окраска у лисиц. Плейотропия в данном случае проявлялась летальным геном, который при образовании доминантной гомозиготы вызывал гибель эмбрионов.
  • У людей плейотропное взаимодействие показано на примере фенилкетонурии, а также

Роль неаллельного взаимодействия

В эволюционном плане все вышеуказанные виды взаимодействия неаллельных генов играют немаловажную роль. Новые генные комбинации обуславливают появление новых признаков и свойств живых организмов. В некоторых случаях, эти признаки способствуют выживанию организма, в других - наоборот, обуславливают смерть тех особей, что будут значительно выделяться среди своего вида.

Неаллельное взаимодействие генов широко используется в селекционной генетике. Некоторые виды живых организмов сохраняются благодаря подобной генной рекомбинации. Другие виды приобретают свойства, которые высоко ценятся в современном мире (например, выведение новой породы животных, обладающих большей выносливостью и физической силой, чем ее родительские особи).

Ведутся работы по поводу использования данных типов наследования у людей с целью исключения негативных признаков из и создания нового, бездефектного генотипа.

Неаллельные гены также могут взаимодействовать между собой. При этом их принцип взаимодействия несколько иной, чем доминантно-рецессивные отношения как в случае аллельных генов.

Правильнее говорить не о взаимодействии генов, а о взаимодействии их продуктов, т. е. взаимодействии белков, которые синтезируются на основе генов.

Комплементарное взаимодействие неаллельных генов - это такое их взаимодействие, при котором их продукты дополняют действие друг друга.

Примером комплиментарного взаимодействия генов является цвет глаз у мушки дрозофилы. У мушек с генотипом S-B- обычные красные глаза, ssbb - белые, S-bb - коричневые, ssB- - ярко-алые. Таким образом, если оба неаллельных гена рецессивны, то никакой пигмент не синтезируется, и глаза становятся белыми. При наличии только доминантного гена S появляется коричневый пигмент, а только доминантного B - ярко-алый. Если же есть два доминантных гена, то их продукты взаимодействуют между собой, образуя красный цвет.

При комплиментарном взаимодействии генов при скрещивании гетерозигот (AaBb) возможны разные расщепления по фенотипу (9:6:1, 9:3:3:1, 9:3:4, 9:7).

Эпистаз - это такое взаимодействие неаллельных генов, когда действие одного гена подавляет действие другого. Эпистатичным (подавляющим) действием на другой ген может обладать как доминантный, так и рецессивный аллель данного гена. Расщепление по фенотипу при доминантном эпистазе, отличается от рецессивного. Эпистатичный ген обычно обозначают буквой I.

Примером эпистаза может служить появление цветного оперения во втором поколении при скрещивании белых кур разных пород. У одних генотип IIAA, у других - iiaa. F 1 - IaAa. В F 2 происходит обычное расщепление по генотипу: 9I-A- : 3I-aa: 3iiA- : 1iicc. При этом птицы с генотипом iiA- оказываются окрашенными, что определяет доминантный ген A, который у одного родителя был подавлен доминантным геном-ингибитором I, а у другого присутствовал только в рецессивной форме.

При полимерном взаимодействии неаллельных генов степень выраженности признака (его количество) зависит от количества доминантных аллельных и неаллельных генов. Чем больше генов участвуют в полимерном взаимодействии, тем больше различных степеней выраженности признака. Это происходит при комулятивной полимерии, когда все гены участвуют в накоплении признака. При некомулятивной полимерии количество доминантных генов не влияет на степень выраженности признака, достаточно хотя бы одного; а отличная по фенотипу форма наблюдается только у особей, у которых все полимерные гены рецессивны.

Полимерией, например, определяется цвет кожи человека. Влияние оказывают четыре гена (или четыре пары аллелей по другим источникам). Рассмотрим ситуацию с двумя парами. Тогда A 1 A 1 A 2 A 2 определит самый темный цвет, a 1 a 1 a 2 a 2 - самый светлый. Средний цвет кожи проявится, если два любых гена будут доминантны (A 1 a 1 A 2 a 2 , A 1 A 1 a 2 a 2 , a 1 a 1 A 2 A 2). Наличие одного доминантного гена приведет к цвету кожи близкому к светлому, но темнее, а трех доминантных - близкого к темному, но светлее.

Бывает, что один ген определяет несколько признаков. Такое действие гена называется плейотропией . Понятно, что здесь речь идет не о взаимодействии генов, а с множественным действием одного гена.

Одно время от разный учеников стали приходить задания по генетике про наследование окраски шерсти у хорьков. Понятно, что «хорьки» (как норки, кролики, лисы) — это лишь модель для закрепления темы по взаимодействию неаллельных генов.

В этой статье приводятся только условия 5 таких заданий про хорьков. Эти задания надо воспринимать комплексно.

1. От скрещивании черного хорька со светло-коричневым в первом поколении все щенки были черными. При скрещивании хорьков из первого поколения между собой наблюдалось расщепление по фенотипам: черные, серые, коричневые и светло-коричневые. Расщепление было близко к 9: 3: 3: 1 соответственно. Напишите все генотипы (родителей и потомства).

2. При скрещивании черного и коричневого хорьков было получено 10 щенков, 6 из которых были коричневыми, а 4 – черными. Определите генотипы родителей и потомства. Какое расщепление по фенотипам и генотипам следует ожидать при скрещивании черного и коричневого хорьков из первого поколения?

3. При скрещивании двух черных хорьков в потомстве были получены черные и серые хорьки. Предположите, как распределились эти признаки среди 12 щенков. Какое потомство следует ожидать при скрещивании черных и серых хорьков из первого поколения между собой?

4. С какой вероятностью может появиться светло-коричневый щенок у черных родителей? Свой ответ подтвердите генотипами родителей и предполагаемого потомства.

5. При скрещивании коричневого хорька с черным в первом поколении были получены 7 черных и 2 серых щенка. Определите генотипы родителей потомства. Какое расщепление по фенотипам и генотипам следует ожидать при скрещивании серых хорьков из первого поколения между собой?

Из условия первой задачи мы видим, что всего окрасок шерсти хорьков от взаимодействия генов В и D наблюдается 4. Больше всего образовывалось хорьков с черным мехом 9, поровну с серым и коричневым по 3 и меньше всех 1 светло-коричневых.

А мы знаем, что классическое отношение 9:3:3:1 является справедливым при дигибридном скрещивании (и только по Менделю), когда изучается наследование сразу двух разных признаков, находящихся обязательно в двух разных парах гомологичных хромосом. Когда мы получаем такое соотношение фенотипов? Лишь во втором поколении от скрещивания дигетерозигот друг с другом, когда каждая скрещиваемая особь дает по четыре «сорта» гамет.

В этих же заданиях речь идет об изучении наследования всего одного признака, но контролируемого двумя разными генами В и D (естественно они уже не являются аллельными, но к ним нельзя и применить правило дигибридного скрещивания Менделя для независимых пар генов), так как гены В и D как то взаимодействуют друг с другом. , что отношение 9: 3: 3: 1 справедливо и для одной из форм комплементарного взаимодействия неаллельных генов.

Именно по задаче 1, мы видим, что окраска шерсти у хорьков «распалась» на четыре формы в соотношении 9:3:3:1, а это возможно, если B доминантный отвечает за один какой-то цвет, D доминантный – за другой какой-то цвет, и если аллели В и D оба доминантные объединятся в одном организме (комплементарное взаимодействие), то вызовут проявление образования третьей окраски. Если нет ни одного доминантного аллеля и генотип особи ввdd, то проявится четвертая окраска.

Комплементарным называется такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары дополняется действием гена из другой аллельной пары, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия – наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный – результат взаимодействия двух рецессивных неаллельных генов аabb; ореховидный – результат взаимодействия двух доминантных неаллельных генов A-B-; розовидный и гороховидный – c генотипами A-bb и aaB- , соответственно.

Другой пример – наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один – черный. В основе формирования той или иной окраски шерсти лежит взаимодействие двух пар неаллельных генов:

A – ген, определяющий синтез пигмента;

a – ген, не определяющий синтез пигмента;

B – ген, определяющий неравномерное распределение пигмента;

b – ген, определяющий равномерное распределение пигмента.

Примеры комплементарного взаимодействия у человека: ретинобластома и нефробластома кодируются двумя парами неаллельных генов.

Возможные варианты расщепления в F 2 при комплементарном взаимодействии: 9:3:4; 9:3:3:1; 9:7.

Эпистаз

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.

Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С – ген, определяющий окраску оперения (обычно пеструю),

с – ген, не определяющий окраску оперения,

I – ген, подавляющий окраску,

i – ген, не подавляющий окраску.

Варианты расщепления в F 2: 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.



Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген I B , однако его действие было подавлено двумя рецессивными эпистатическими генами dd.

Полимерия

Полимерия - такой вид взаимодействия неаллельных генов, при котором несколько неаллельных генов определяют один и тот же признак, усиливая его проявление. Это явление противоположно плейотропии. По типу полимерии обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления в природе.

Например, окраска зерен у пшеницы определяется двумя парами неаллельных генов:

A 1

a 1 – ген, не определяющий красную окраску;

A 2 – ген, определяющий красную окраску;

a 2 – ген, не определяющий красную окраску.

A 1 A 1 A 2 A 2 – генотип растений с красной окраской зерен;

a 1 a 1 a 2 a 2 - генотип растений с белой окраской зерен.

Расщепление в F 2: 15:1 или 1:4:6:4:1.

У человека по типу полимерии наследуются такие признаки, как рост, цвет волос, цвет кожи, величина артериального давления, умственные способности.

Эффект положения

Эффект положения – вид взаимодействия неаллельных генов, обусловленный местом положения гена в генотипе.

Пример – наследование белка Rh- фактора (резус-фактора). У 85% европейцев резус-фактор имеется (Rh+ ), у 15% – его нет (Rh- ). Определяется резус-фактор тремя доминантными генами (С, D, E), расположенными в хромосоме рядом друг с другом.

Два человека с одинаковым генотипом CcDDEe будут иметь разные фенотипы в зависимости от варианта расположения аллельных генов в паре гомологичных хромосом: в варианте А – много антигена Е, но мало антигена С; в варианте В – мало антигена Е, но много антигена С.

Вариант А Вариант В