Формула эйлера расчет на устойчивость. Определение критической силы. Формула Эйлера. Влияние способа закрепления концов стержня

ДЛИНА СТЕРЖНЯ ПРИВЕДЕННАЯ условная длина сжатого стержня с заданными условиями закрепления его концов, длина которого по значению критической силы эквивалентна длине стержня с шарнирно закреплёнными концами

(Болгарский язык; Български) - приведена дължина на прът

(Чешский язык; Čeština) - vzpěrná délka prutu

(Немецкий язык; Deutsch) - reduzierte Stablänge; ideelle Stablänge

(Венгерский язык; Magyar) - rúd kihajlás! hossza

(Монгольский язык) - туйвангийн хөрвүүлсэн урт

(Польский язык; Polska) - długość sprowadzona pręta

(Румынский язык; Român) - lungime convenţională a barei

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) - redukovaná dužina štapa

(Испанский язык; Español) - luz efectiva de una barra

(Английский язык; English) - reduced length of bar

(Французский язык; Français) - longueur réduite d"une barre

Строительный словарь .

Смотреть что такое "ДЛИНА СТЕРЖНЯ ПРИВЕДЕННАЯ" в других словарях:

    длина стержня приведенная - Условная длина сжатого стержня с заданными условиями закрепления его концов, длина которого по значению критической силы эквивалентна длине стержня с шарнирно закреплёнными концами [Терминологический словарь по строительству на 12 языках (ВНИИИС… …

    приведенная длина стержня - Условная длина однопролетного стержня, критическая сила которого при шарнирном закреплении его концов такая же, как для заданного стержня. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно… … Справочник технического переводчика

    Схемы деформирования и коэффициенты при различных условиях закрепления и способе приложения нагрузки Гибкость стержня отношение расчетной длины стержня … Википедия

    - (силомер). Этим именем называют в курсах физики пружинные весы, а в механике приборы для измерения механической работы (см). Самое старинное изображение пружинных весов, по словам Карстена, напечатано в 1726 г., без описания, в книге: Leupold,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    МЕРЫ - МЕРЫ, определенные физ. величины, с которыми сравниваются другие величины с целью измерения последних. Основные меры наиболее распространенной метрической системы: метр длина при 0° платинового стержня, хранящегося в Международном бюро мер и… … Большая медицинская энциклопедия

Продольный изгиб

При расчетах на прочность подразумевалось , что равновесие конструкции под действием внешних сил является устойчивым . Однако выход конструкции из строя может произойти из-за того, что равновесие конструкций в силу тех или иных причин окажется неустойчивым . Во многих случаях, кроме проверки прочности, необходимо производить еще проверку устойчивости элементов конструкций.

Состояние равновесия считается устойчивым , если при любом возможном отклонении системы от положения равновесия возникают силы, стремящиеся вернуть её в первоначальное положение.

Рассмотрим известные виды равновесия.

Неустойчивое равновесное состояние будет в том случае, когда хотя бы при одном из возможных отклонений системы от положения равновесия возникнут силы, стремящиеся удалить её от начального положения.

Состояние равновесия будет безразличным , если при разных отклонениях системы от положения равновесия возникают силы, стремящиеся вернуть её в начальное положение, но хотя бы при одном из возможных отклонений система продолжает оставаться в равновесии при отсутствии сил, стремящихся вернуть её в начальное положение или удалить от этого положения.

При потере устойчивости характер работы конструкции меняется, так как этот вид деформации переходит в другой, более опасный, способный привести её к разрушению при нагрузке значительно меньшей, чем это следовало из расчета на прочность . Очень существенно, что потеря устойчивости сопровождается нарастанием больших деформаций , поэтому явление это носит характер катастрофичности.

При переходе от устойчивого равновесного состояния к неустойчивому конструкция проходит через состояние безразличного равновесия. Если находящейся в этом состоянии конструкции сообщить некоторое небольшое отклонение от начального положения, то по прекращении действия причины, вызвавшей это отклонение, конструкция в исходное положение уже не вернется, но будет способна сохранить приданное ей, благодаря отклонению, новое положение.

Состояние безразличного равновесия, представляющее как бы границу между двумя основными состояниями – устойчивым и неустойчивым, называется критическим состоянием. Нагрузка, при которой конструкция сохраняет состояние безразличного равновесия, называется критической нагрузкой .

Эксперименты показывают, что обычно достаточно немного увеличить нагрузку по сравнению с её критическим значением, чтобы конструкция из-за больших деформаций потеряла свою несущую способность, вышла из строя. В строительной технике потеря устойчивости даже одним элементом конструкции вызывает перераспределение усилий во всей конструкции и нередко влечет к аварии.

Изгиб стержня,связанный с потерей устойчивости, называется продольным изгибом .

Критическая сила. Критическое напряжение

Наименьшая величина сжимающей силы, при которой первоначальная форма равновесия стержня – прямолинейная становится неустойчивой – искривленной, называется критической.

При исследовании устойчивости форм равновесия упругих систем первые шаги были сделаны Эйлером .

В упругой стадии деформирования стержня при напряжениях, не превышающих предел пропорциональности , критическая сила вычисляется по формуле Эйлера :

где I min минимальный момент инерции сечения стержня (обусловлено тем, что изгиб стержня происходит в плоскости с наименьшей жесткостью), однако исключения могут быть только в случаях, когда условия закрепления концов стержня различны в разных плоскостях, - геометрическая длина стержня, μ – или (зависит от способов закрепления концов стержня), Значения μ приведены под соответствующей схемой закрепления стержней

Критическое напряжение вычисляется следующим образом

, где гибкость стержня,

а радиус инерции сечения.

Введем понятие предельной гибкости .

Величина λ пред зависит только от вида материала:

Если у стали 3 Е =2∙10 11 Па, а σ пц =200МПа , то предельная гибкость

Для дерева (сосна, ель) предельная гибкость λпред=70, для чугуна λпред=80

Таким образом, для стержней большой гибкости λ≥λ пред критическая сила определяется по формуле Эйлера.

В упругопластической стадии деформирования стержня, когда значение гибкости находится в диапазоне λ 0 ≤λ≤λ пр, (стержни средней гибкости) расчет проводится по эмпирическим формулам , например, можно использовать формулу Ясинского Ф.С. Значения введенных в нее параметров определены эмпирически для каждого материала.

σ к =а-bλ, или F кр = A (a b λ)

где a и b – постоянные, определяемые экспериментальным путем ().Так, для стали3 а =310МПа, b =1,14МПа.

При значениях гибкости стержня 0≤λ≤λ 0 (стержни малой гибкости) потеря устойчивости не наблюдается.

Таким образом, пределы применимости формулы Эйлера применяется только в зоне упругих деформаций.

Условие устойчивости. Типы задач при расчете на устойчивость.

Условием устойчивости сжатого стержня является неравенство:

Здесь допускаемое напряжение по устойчивости [σуст ] — не постоянная величина , как это было в условиях прочности, а зависящая от следующих факторов :

1) от длины стержня, от размеров и даже от формы поперечных сечений,

2) от способа закрепления концов стержня,

3) от материала стержня.

Как и всякая допускаемая величина, уст ] определяется отношением опасного для сжатого стержня напряжения к коэффициенту запаса. Для сжатого стержня опасным является так называемое критическое напряжение σкр , при котором стержень теряет устойчивость первоначальной формы равновесия .

Поэтому

Величину коэффициента запаса в задачах устойчивости принимают несколько большей, чем значение , то есть если k =1÷2, то k уст =2÷5 .

Допускаемое напряжение по устойчивости можно связать с допускаемым напряжением по прочности:

В этом случае ,

где σт – опасное с точки зрения прочности напряжение (для пластичных материалов это предел текучести, а для хрупких – предел прочности на сжатие σвс ).

Коэффициент φ<1 и потому называется коэффициентом снижения основного допускаемого напряжения , то есть [σ] по прочности , или иначе

С учетом сказанного условие устойчивости сжатого стержня принимает вид:

Численные значения коэффициента φ выбираются из таблиц в зависимости от материала и величины гибкости стержня , где:

μ коэффициент приведенной длины (зависит от способов закрепления концов стержня), - геометрическая длина стержня,

i радиус инерции поперечного сечения относительно той из главных центральных осей сечения, вокруг которой будет происходить поворот поперечных сечений после достижения нагрузкой критического значения.

Коэффициент φ изменяется в диапазоне 0≤φ≤1 , зависит,как уже говорилось, как от физико-механических свойств материала, так и от гибкости λ. Зависимости между φ и λ для различных материалов представляются обычно в табличной форме с шагом ∆λ=10.

При вычислении значений φ для стержней, имеющих значения гибкости не кратные числу 10, применяется правило линейной интерполяции .

Значения коэффициента φ в зависимости от гибкости λ для материалов

На основании условия устойчивости решаются три вида задач :

  1. Проверка устойчивости .
  2. Подбор сечения .
  3. Определение допускаемой нагрузки (или безопасной нагрузки, или грузоподъемности стержня: [F ]=φ[σ]А .

Наиболее сложным оказывается решение задачи о подборе сечения , поскольку необходимая величина площади сечения входит и в левую, и в правую часть условия устойчивости:

Только в правой части этого неравенства площадь сечения находится в неявном виде: она входит в формулу радиуса инерции , который в свою очередь включен в формулу гибкости , от которой зависит значение коэффициента продольного изгиба φ . Поэтому здесь приходится использовать метод проб и ошибок, облеченный в форму способа последовательных приближений :

1 попытка : задаемся φ1 из средней зоны таблицы , находим , определяем размеры сечения, вычисляем , затем гибкость , по таблице определяем и сравниваем со значением φ1 . Если , то.

Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

Рис.1

Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

а изогнутая ось представляет синусоиду

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

Значит, а — это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда

Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.

Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно

Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

Влияние способа закрепления концов стержня.

Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.

Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить" к основному случаю.

Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.


Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.

Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.

Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ . Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.

Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та,же, что для стойки с шарнирно-опертыми концами при длине :

Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).


Рис.3. Расчетная схема с жесткозакреплеными торцами.

Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :

Полученные выражения можно объединить с формулой для критической силы основного случая и записать:

здесь — так называемый коэффициент длины, равный:

Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:

Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом

Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).

На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.

Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).

В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.

Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10—20) уменьшение свободной длины стержня.

Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.

Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.

Впервые проблема устойчивости сжатых стержней была поставлена . Эйлер вывел расчетную формулу для критической силы и показал, что ее величина существенно зависит от способа закрепления стержня. Идея метода Эйлера заключается в установлении условий, при которых кроме прямолинейной возможна и смежная (т.е. сколь угодно близкая к исходной) криволинейная форма равновесия стержня при постоянной нагрузке.

Предположим, что шарнирно закрепленный по концам прямой стержень, сжатый силой P = P k , был выведен некоторой горизонтальной силой из состояния прямолинейного равновесия и остался изогнутым после устранения горизонтальной силы (рис. 13.4). Если прогибы стержня малы, то приближенное дифференциальное уравнение его оси будет иметь такой же вид, как и при поперечном изгибе бруса:

Совмещая начало координат с центром нижнего сечения, направим ось у в сторону прогибов стержня, а ось х - по оси стержня.

В теории продольного изгиба принято сжимающую силу считать положительной. Поэтому, определяя изгибающий момент в текущем сечении рассматриваемого стержня, получаем

Но, как следует из рис. 13.4, при выбранном направлении осей у // <0, поэтому знаки левой и правой частей уравнения (17.2) будут одинаковыми, если в правой части сохранить знак минус. Если изменить направление оси у на противоположное, то одновременно изменятся знаки у и у // и знак минус в правой части уравнения (13.2) сохранится.

Следовательно, уравнение упругой линии стержня имеет вид

.

Полагая α 2 =Рк /EI , получаем линейное однородное дифференциальное уравнение

,

общий интеграл которого

Здесь A и B - постоянные интегрирования, определяемые из условий закрепления стержня, так называемых граничных или краевых условий.

Горизонтальное смещение нижнего конца стержня, как видно из рис. 13.4, равно нулю, т. е. при х =0 прогиб у =0. Это условие будет выполнено, если B =0. Следовательно, изогнутая ось стержня является синусоидой

.

Горизонтальное смещение верхнего конца стержня также равно нулю, поэтому

.

Константа A , представляющая собой наибольший прогиб стержня, не может быть равна нулю, так как при A =0 возможна только прямолинейная форма равновесия, а мы ищем условие, при котором возможна и криволинейная форма равновесия. Поэтому должно быть sin α l =0. Отсюда следует, что криволинейные формы равновесия стержня могут существовать, если α l принимает значения π ,2π ,.n π . Величина α l не может быть равна нулю, так как это решение соответствует случаю

Приравнивая α l = n π и подставляя

получаем

.

Выражение (13.5) называется формулой Эйлера . По ней можно вычислить критическую силу Рк при выпучивании стержня в одной из двух главных его плоскостей, так как только при этом условии справедливо уравнение (13.2), а следовательно и формула (13.5).

Выпучивание стержня происходит в сторону наименьшей жесткости, если нет специальных устройств, препятствующих изгибу стержня в этом направлении. Поэтому в формулу Эйлера надо подставлять I min - меньшей из главных центральных моментов инерции поперечного сечения стержня.

Величина наибольшего прогиба стержня A в приведенном решении остается неопределенной, она принята произвольной, но предполагается малой.

Величина критической силы, определяемая формулой (13.5), зависит от коэффициента n . Выясним геометрический смысл этого коэффициента.

Выше мы установили, что изогнутая ось стержня является синусоидой, уравнение которой после подстановки α =π n /l в выражение (13.4) принимает вид

.

Синусоиды для n =1, n =2 изображены на рис. 13.5. Нетрудно заметить, что величина n представляет собой число полуволн синусоиды, по которой изогнется стержень. Очевидно, стержень всегда изогнется по наименьшему числу полуволн, допускаемому его опорными устройствами, так как согласно (13.5) наименьшему n соответствует наименьшая критическая сила. Только эта первая критическая сила и имеет реальный физический смысл.

Например, стержень с шарнирно опертыми концами изогнется, как только будет достигнуто наименьшее значение критической силы, соответствующее n =1, так как опорные устройства этого стержня допускают изгиб его по одной полуволне синусоиды. Критические силы, соответствующие n =2, n =3, и более, могут быть достигнуты только при наличии промежуточных опор (рис. 13.6). Для стержня с шарнирными концевыми опорами без промежуточных закреплений реальный смысл имеет первая критическая сила

.

Формула (13.5), как следует из ее вывода, справедлива не только для стержня с шарнирно закрепленными концами, но и для любого стержня, который изогнется при выпучивании по целому числу полуволн. Применим эту формулу, например, при определении критической силы для стержня, опорные устройства которого допускают только продольные смещения его концов (стойка с заделанными концами). Как видно из рисунка 13.7, число полуволн изогнутой оси в этом случае n =2 и, следовательно, критическая сила для стержня при данных опорных устройствах

.

Предположим, что стойка с одним защемленным и другим свободным концом (рис. 13.8) сжата силой Р .

Если сила P = P k , то кроме прямолинейной может существовать также и криволинейная форма равновесия стойки (пунктир на рис. 13.8).

Дифференциальное уравнение изогнутой оси стойки в изображенной на рис. 13.8 системе координатных осей имеет прежний вид.

Общее решение этого уравнения:

Подчиняя это решение очевидным граничным условиям: y =0 при x =0 и y / =0 при x = l , получаем B =0, A α cos α l = 0.

Мы предположили, что стойка изогнута, поэтому величина A не может быть равна нулю. Следовательно, cos α l = 0. Наименьший отличный от нуля, корень этого уравнения α l = π /2 определяет первую критическую силу

,

которой соответствует изгиб стержня по синусоиде

.

Значениям α l =3π /2, α l =5π /2 и т.д, как было показано выше, соответствуют большие величины P k и более сложные формы изогнутой оси стойки, которые могут практически существовать лишь при наличии промежуточных опор.

В качестве второго примера рассмотрим стойку с одним защемленным и вторым шарнирно опертым концом (рис. 13.9). Вследствие искривления оси стержня при P = P k со стороны шарнирной опоры возникает горизонтальная реактивная сила R . Поэтому изгибающий момент в текущем сечении стержня

.α :

Наименьший корень этого уравнения определяет первую критическую силу. Это уравнение решается методом подбора. Нетрудно поверить, что наименьший, отличный от нуля, корень этого уравнения α l = 4.493=1.43 π .

Принимая α l = 1.43 π , получаем следующее выражение для критической силы:

Здесь μ =1/n - величина, обратная числу полуволн n синусоиды, по которой изогнется стержень. Постоянная μ называется коэффициентом приведения длины, а произведение μ l - приведенной длиной стержня. Приведенная длина есть длина полуволны синусоиды, по которой изгибается этот стержень.

Случай шарнирного закрепления концов стержня называется основным. Из сказанного выше следует, что критическая сила для любого случая закрепления стержня может быть вычислена по формуле для основного случая при замене в ней действительной длины стержня его приведенной длиной μ l .

Коэффициенты приведения μ для некоторых стоек даны на рис. 17.10.

Во всем предыдущем изложении мы определяли поперечные размеры стержней из условий прочности. Однако разрушение стержня может произойти не только потому, что будет нарушена прочность, но и оттого, что стержень не сохранит той формы, которая ему придана конструктором; при этом изменится и характер напряженного состояния в стержне.

Наиболее типичным примером является работа стержня, сжатого силами Р . До сих пор для проверки прочности мы имели условие

Это условие предполагает, что стержень все время, вплоть до разрушения работает на осевое сжатие. Уже простейший опыт показывает, что далеко не всегда возможно разрушить стержень путем доведения напряжений сжатия до предела текучести или до предела прочности материала.

Если мы подвергнем продольному сжатию тонкую деревянную линейку, то она может сломаться, изогнувшись; перед изломом сжимающие силы, при которых произойдет разрушение линейки, будут значительно меньше тех, которые вызвали бы при простом сжатии напряжение, равное пределу прочности материала. Разрушение линейки произойдет потому, что она не сможет сохранить приданную ей форму прямолинейного, сжатого стержня, а искривится, что вызовет появление изгибающих моментов от сжимающих сил Р и, стало быть, добавочные напряжения от изгиба; линейка потеряет устойчивость.

Поэтому для надежной работы конструкции мало, чтобы она была прочна; надо, чтобы все ее элементы были устойчивы : они должны при действии нагрузок деформироваться в таких пределах, чтобы характер их работы оставался неизменным. Поэтому в целом ряде случаев, в частности, для сжатых стержней, помимо проверки на прочность, необходима и проверка на устойчивость. Для осуществления этой проверки надо ближе ознакомиться с условиями, при которых устойчивость прямолинейной формы сжатого стержня нарушается.


Рис.1. Расчетная схема

Возьмем достаточно длинный по сравнению с его поперечными размерами стержень, шарнирно-прикрепленный к опорам (Рис.1), и нагрузим его сверху центрально силой Р , постепенно возрастающей. Мы увидим, что пока сила Р сравнительно мала, стержень будет сохранять прямолинейную форму. При попытках отклонить его в сторону, например путем приложения кратковременно действующей горизонтальной силы, он будет после ряда колебаний возвращаться к первоначальной прямолинейной форме, как только будет удалена добавочная сила, вызвавшая отклонение.

При постепенном увеличении силы Р стержень будет все медленнее возвращаться к первоначальному положению при проверках его устойчивости; наконец, можно довести силу Р до такой величины, при которой стержень, после небольшого отклонения его в сторону, уже не выпрямится, а останется искривленным. Если мы, не удаляя силы Р , выпрямим стержень, он уже, как правило, не сможет сохранить прямолинейную форму. Другими словами, при этом значении силы Р , называемом критическим , мы будем иметь такое состояние равновесия, когда исключается вероятность сохранения стержнем заданной ему прямолинейной формы).

Переход к критическому значению силы Р происходит внезапно ; стоит нам очень немного уменьшить сжимающую силу по сравнению с ее критической величиной, как прямолинейная форма равновесия вновь делается устойчивой.

С другой стороны, при очень небольшом превышении сжимающей силой Р ее критического значения прямолинейная форма стержня делается крайне неустойчивой ; достаточно при этом небольшого эксцентриситета приложенной силы, неоднородности материала по сечению, чтобы стержень искривился, и не только не вернулся к прежней форме, а продолжал искривляться под действием все возрастающих при искривлении изгибающих моментов; процесс искривления заканчивается либо достижением совершенно новой (устойчивой) формы равновесия, либо разрушением.

Исходя из этого, мы должны практически считать критическую величину сжимающей силы эквивалентной нагрузке, «разрушающей» сжатый стержень, выводящей его (и связанную с ним конструкцию) из условий нормальной работы. Конечно, при этом надо помнить, что «разрушение» стержня нагрузкой, превышающей критическую, может происходить при непременном условии беспрепятственного возрастания искривления стержня; поэтому если при боковом выпучивании стержень встретит боковую опору, ограничивающую его дальнейшее искривление, то разрушение может и не наступить.

Обычно подобная возможность является исключением; поэтому практически следует считать критическую сжимающую силу низшим пределом «разрушающей» стержень силы.


Рис.2. Аналогия понятия устойчивости из механики твердого тела

Явление потери устойчивости при сжатии можно по аналогии иллюстрировать следующим примером из механики твердого тела (рис.2). Будем вкатывать цилиндр на наклонную плоскость ab , которая потом переходит в короткую горизонтальную площадку и наклонную плоскость обратного направления cd . Пока мы поднимаем цилиндр по плоскости ab , поддерживая его при помощи упора, перпендикулярного к наклонной плоскости, он будет в.состоянии устойчивого равновесия; на площадке его равновесие делается безразличным; стоит же нам поместить цилиндр в точку с, как его равновесие сделается неустойчивым— при малейшем толчке вправо цилиндр начнет двигаться вниз.

Описанную выше физическую картину потери устойчивости сжатым стержнем легко осуществить в действительности в любой механической лаборатории на очень элементарной установке. Это описание не является какой-то теоретической, идеализированной схемой, а отражает поведение реального стержня под действием сжимающих сил.

Потерю устойчивости прямолинейной формы сжатого стержня иногда называют «продольным изгибом», так как она влечет за собой значительное искривление стержня под действием продольных сил. Для проверки на устойчивость сохранился и до сих пор термин «проверка на продольный изгиб», являющийся условным, так как здесь речь должна идти не о проверке на изгиб, а о проверке на устойчивость прямолинейной формы стержня.

Установив понятие о критической силе, как о «разрушающей» нагрузке, выводящей стержень из условий его нормальной работы, мы легко можем составить условие для проверки на устойчивость, аналогичное условию прочности.

Критическая сила вызывает в сжатом стержне напряжение, называемое «критическим напряжением» и обозначаемое буквой . Критические напряжения являются опасными напряжениями для сжатого стержня. Поэтому, чтобы обеспечить устойчивость прямолинейной формы стержня, сжатого силами Р , необходимо к условию прочности добавить еще условие устойчивости:

где — допускаемое напряжение на устойчивость, равное критическому, деленному на коэффициент запаса на устойчивость, т. е. .

Для возможности осуществить проверку на устойчивость мы должны показать, как определять и как выбрать коэффициент запаса .

Формула Эйлера для определения критической силы.

Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3). Собственным весом стержня пренебрегаем.


Рис.3. Расчетная схема в «задаче Эйлера»

Нагрузим стержень центрально приложенными продольными сжимающими силами и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как .

Деформация изгиба стержня предположена весьма малой, поэтому для решения поставленной задачи можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня. Выбрав начало координат в точке А и направление координатных осей, как показано на рис.3, имеем:

Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у , а изгибающий момент равен

По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у — отрицательным и .)

Приведенное только что дифференциальное уравнение принимает вид:

деля обе части уравнения на EJ и обозначая дробь через приводим его к виду:

Общий интеграл этого уравнения имеет вид.