Теорема о сложении пар сил. Условие равновесия системы пар сил. Основные свойства пары Теорема о сложении пар в пространстве

Пара сил - совокупность двух параллельных друг другу сил равных по величине и направленных в противоположные стороны. Пара сил не может быть более упрощена (заменена одной силой) и представляет собой новую силовую характеристику механического взаимодействия.

Теорема о моменте пары сил. Момент пары сил не зависит от выбора центра привидения и равен произведению любой из сил пары на плечо пары, взятый со знаком «+» при вращении пары против часовой стрелки или со знаком «-» при вращении по часовой.

Плечо пары сил - длина перпендикуляра опущенного из любой точки линии действия одной силы к линии действия другой силы этой пары.

Теорема об эквивалентности пар сил в плоскости. Пары сил, лежащие в одной плоскости, эквивалентны, если их моменты численно равны и одинаковы по знаку.

Следствие. Пару сил, не изменяя ее действие на твердое тело, можно переносить в любое место в плоскости ее действия, поворачивать ее плечо на любой угол, а также изменять это плече и модули сил, не изменяя величины ее момента и направления вращения. Следовательно, основной характеристикой пары сил является ее момент.

Теорема об эквивалентности пар сил в пространстве. Пары сил в пространстве эквивалентны, если их моменты геометрически равны.

Следствие. Не изменяя действия пары сил на твердое тело, пару сил можно переносить в любую плоскость, параллельную плоскости ее действия, а также изменять ее силы и плечо, сохраняя неизменным модуль и направление ее момента. Вектор момента пары сил можно переносить в любую точку, т.е. момент пары сил является свободным вектором. Вектор момента пары сил определяет все три ее элемента: положение плоскости действия пары, направление вращения и числовое значение момента.

Теорема о сложении пар сил на плоскости. Систему пар сил можно заменить парой сил, момент которой равен алгебраической сумме моментов исходных пар. Кинематическое состояние тела не изменяется.

Условие равновесия системы пар сил:

Статические инварианты и динамические винты

Инварианты системы сил - величины, не зависящие от выбора центра приведения. Первый векторный инвариант - главный вектор системы сил .

Главный момент не является инвариантом т.к. зависит от центра привидения. Однако существует величина, связанная с главным вектором и не зависящая от центра приведения. Однако существует величина, связанная с главным вектором и не зависящая от центра привидения:

1)

3) .

Второй скалярный инвариант - скалярное произведение главного вектора на вектор главного момента.

.

Главный минимальный момент также инвариантная величина:

.

Динамический винт - совокупность действующих на тело силы F и пары сил с моментом М , лежащей в плоскости перпендикулярной силе F. К динамическому винту приводится в наиболее общем случае произвольная система сил, действующих на тело. Дальнейшее упрощение динамического винта не возможно, т.е. его нельзя заменить одной силой и одной парой сил. Можно лишь сложив F с одной из сил пары привести его к двум скрещивающимся силам.

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Теорема о сложении пар сил . Две пары сил, действующих на одно и то же твердое тело, и лежащие в пересекающихся плоскостях, можно заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Доказательство: Пусть имеются две пары сил, расположенные в пересекающихся плоскостях. Пара сил в плоскости характеризуется моментом, а пара сил в плоскости характеризуется моментом.Расположим пары сил так, чтобы плечо пар было общим и располагалось на линии пересечения плоскостей. Складываем силы, приложенные в точке А и в точке В, . Получаем пару сил.

Условия равновесия пар сил.

Если на твердое тело действует несколько пар сил, как угодно расположенных в пространстве, то последовательно применяя правило параллелограмма к каждым двум моментам пар сил, можно любое количество пар сил заменить одной эквивалентной парой сил, момент которой равен сумме моментов заданных пар сил.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необхо-димо и достаточно, чтобы момент эквивалентной пары сил равнялся нулю.

Теорема. Для равновесия пар сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма проекций моментов пар сил на каждую из трех координатных осей была равна нулю.

20.динамические дифференциальные уравнения относительно движения материальной точки. Динамическая теорема Кориолиса

Дифференциальные уравнения движения свободной материальной точки.

Для вывода уравнений воспользуемся второй и четвертой аксиомами динамики. Согласно второй аксиоме ma = F (1)

где, по четвертой аксиоме, F является равнодействующей всех сил, приложенных к точке.

С учетом последнего замечания выражение (1) часто называют основным уравнением динамики. По форме записи оно представляет собой второй закон Ньютона, где одна сила, согласно аксиоме независимости действия сил, заменена равнодействующей всех сил, приложенных к материальной точке. Вспомнив, что a = dV / dt = d2r / dt = r"", получаем из (1) дифференциальное уравнение движения материальной точки в векторной форме: mr"" = F (2)

дифференциальные уравнения движения несвободной материальной точки .

Согласно аксиоме связей, заменив связи их реакциями, можно рассматривать несвободную материальную точку, как свободную, находящуюся под действием активных сил и реакций связей.согласно четвертой аксиоме динамики, F будет равнодействующей активных сил и реакций связей.



Поэтому дифференциальные уравнения движения свободной материальной точки можно использовать для описания движения несвободной точки, помня о том, что проекции сил на прямоугольные оси Fx, Fy, Fz в уравнениях (4) и проекции сил на естественные оси Fτ, Fn, Fb в уравнениях (6) включают в себя не только проекции активных сил, но и проекции реакций связей.

Наличие реакций связей в уравнениях движения точки естественно усложняет решение задач динамики, так как в них появляются дополнительные неизвестные. Для решения задач нужно знать свойства связей и иметь уравнения связей, которых должно быть столько, сколько реакций связей.

Сила Кориолиса равна:

где m - точечная масса, w - вектор угловой скорости вращающейся системы отсчёта, v- вектор скорости движения точечной массы в этой системе отсчёта, квадратными скобками обозначена операция векторного произведения.

Величина называется кориолисовым ускорением.

Си́лаКориоли́са - одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения

Основные свойства пары характеризуются следующими тремя теоремами.

Теорема I. Пара сил не имеет равнодействующей.

Это значит, что при F 1 =F 2 равнодействующая не существует .

Из этой теоремы следует, что пара сил не может быть уравновешена одной силой; пара сил может быть уравновешена только парой .

Теорема II. Алгебраическая сумма моментов сил, составля­ющих пару, относительно любой точки плоскости действия пары есть величина постоянная, равная моменту пары .

Из этой теоремы следует, что при любом центре моментов пара сил войдет в уравнение моментов с одним и тем же знаком и одной и той же величиной.

Теорема III . Алгебраическая сумма проекций сил пары на ось всегда равна нулю.

Из этой теоремы следует, что пара сил не входит ни в уравнение сил, ни в уравнение проекций сил.

  1. Векторный момент силы относительно точки. Свойства момента. Векторный момент пары сил, свойства момента.

Теорема о сложении пар

Теорема . Всякая плоская система пар эквивалента одной результирующей паре, момент которой равен алгебраической сумме моментов данных пар.

  1. Эквивалентные пары сил. Векторный момент пары сил. Условие равновесия пар сил.

Эквивалентные пары

Две пары называются эквивалентными , если одну из них можно заменить другой, не нарушая механического состояния свободного твердого тела.

Теорема об эквивалентных парах формулируется так: если моменты двух пар алгебраически равны, то эти пары эквивалентны.

Из доказанной теоремы об эквивалентных парах вытекает четыре следствия:

1. не изменяя механического состояния тела, пару можно
перемещать как угодно в плоскости ее действия;

2. не изменяя механического состояния тела, можно менять
силы и плечо пары, но так, чтобы ее момент остаются неизменным;

3. чтобы задать пару, достаточно задать ее момент, поэтому иногда слово «пара» заменяют словом «момент» и условно изображают его так, как показано на рис. 4.6;

4. условия равновесия плоской системы па­раллельных сил будут справедливы, если вместе с такой системой действуют и пары сил, так как их можно повернуть в плоскости действия и поставить силы пары параллельно другим силам системы.



Условие равновесия плоской системы пар

Применяя доказанную в предыдущем параграфе теорему к плоской системе пар, находящейся в равновесии, запишем

Поэтому условие равновесия плоской системы пар в общем виде будет выглядеть так:

а формулируется следующим образом: для равновесия плоской системы пар необходимо и достаточно, чтобы алгебраическая сумма моментов данных пар равнялась нулю/

  1. Условия равновесия произвольной плоской системы сил. Три формы.

Различные случаи приведения плоской системы произвольно расположенных сил

Изучив свойства главного вектора и главного момента, укажем четыре возможных случая приведения плоской системы произвольно расположенных сил:

1. F гл ≠0, М гл ≠0, т. е. главный вектор и главный момент
не равны нулю. В этом случае система сил эквивалентна
равнодействующей, которая равна по модулю главному век­
тору, параллельна ему, направлена в ту же сторону, но по
другой линии действия (см. § 5.3, п. 3).

2. F гл ≠0, М гл =0. В этом случае система сил эквивалентна
равнодействующей, линия действия которой проходит через
центр приведения и совпадает с главным вектором.

3. F гл =0, М гл ≠0. В этом случае система эквивалентна
паре. Так как модуль и направление главного вектора во
всех случаях не зависят от выбора центра приведения, то
в рассматриваемом случае величина и знак главного момента
тоже не зависят от центра приведения, ибо одна и та же
система сил не может быть эквивалентна различным парам.

4. F гл =0, М гл =0. В этом случае система сил эквивалентна
нулю, т. е. находится в равновесии.

Теорема: система пар сил, действующих на абсолютно твёрдое тело в одной плоскости, эквивалентно паре сил с моментом, равным алгебраической сумме моментов пар системы.

Равнодействующая пара - это пара сил, заменяющая действие данных пар сил приложенных к твёрдому телу в одной плоскости.

Условие равновесия системы пар сил: для равновесия плоской системы пар сил необходимо и достаточно, чтобы сумма их моментов была равна 0.

Момент силы относительно точки.

Моментом силы относительно точки называется взятое со знаком "плюс" или "минус" произведение модуля силы на ее плечо относительно данной точки. Плечом силы относительно точки называется длина перпендикуляра, опущенного из данной точки на линию действия силы. Принято следующее правило знаков: момент силы относительно данной точки положителен, если сила стремится вращать тело вокруг этой точки против часовой стрелки, и отрицателен в противоположном случае. Если линия действия силы проходит через некоторую точку, то относительно этой точки плечо силы и ее момент равны нулю. Момент силы относительно точки определяется по формуле.

Св-ва момента силы относительно точки :

1.Момент силы относительно данной точки не меняется при переносе силы вдоль её линии действия, т.к. при этом не изменяется ни модуль силы, ни её плечо.

2.Момент силы относительно данной точки равен нулю, если линия действия силы проходит через эту точку, т.к. в этом случае плечо силы равно нулю: а=0

Теорема Пуансо о приведении силы к точке.

Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Операция параллельного переноса силы называется приведением силы к точке, а появляющаяся при этом пара - называется присоединённой парой.

Возможно и обратное действие: силу и пару сил, лежащие в одной плоскости, всегда можно заменить одной силой, равной данной силе, перенесённой параллельно своему начальному направлению в некоторую другую точку.

Дано: сила в точке А (рис. 5.1).

Добавим в точке В уравновешенную систему сил (F"; F"). Образуется пара сил (F; F"). Получим силу в точке В и момент пары m.

Приведение плоской системы произвольно расположенных сил к одному центру. Главный вектор и главный момент системы сил.

Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произвольно выбранную точку - точку приведения (т.О). Применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии ее действия, добавляют пару сил.

Появившиеся при переносе пары называют присоединенными парами.

Полученную в т.О ССС складывают по способу силового многоугольника и получаем одну силу в т.О – это главный вектор.

Полученную систему присоединённых пар сил также можно сложить и получить одну пару сил, момент которой называется главным моментом.

Главный вектор равен геометрической сумме сил. Главный момент равен алгебраической сумме моментов присоединённых пар сил или моментов исходных сил относительно точке приведения.

Определение и свойства главного вектора и главного момента плоской системы сил.

Свойства главного вектора и главного момента

1 Модуль и направление главного вектора не зависят от выбора центра приведения, т.к. при центре приведения силовой многоугольник, построенный из данных сил, будет один и тот же)

2.Величина и знак главного момента зависят от выбора центра приведения, т.к. при перемене центра приведения меняются плечи сил, а модули их остаются неизменными.

3. Главный вектор и равнодействующая системы сил векторно равны, но в общем случае не эквивалентны, т.к. ещё имеется момент

4. Главный вектор и равнодействующая эквивалентны лишь в частном случае, когда главный момент системы равен нулю, а это при случае, когда центр приведения находится на линии действия равнодействующей

Рассмотрим плоскую систему сил (F 1 ,F 2 , ...,F n),действующих на твердое тело в координатной плоскости Oxy.

Главным вектором системы сил называется вектор R , равный векторной сумме этих сил:

R = F 1 + F 2 + ... + F n = F i .

Для плоской системы сил ее главный вектор лежит в плоскости действия этих сил.

Главным моментом системы сил относительно центра O называется вектор L O , равный сумме векторных моментов этих сил относительно точки О:

L O = M O (F 1) +M O (F 2) + ... +M O (F n) = M O (F i).

Вектор R не зависит от выбора центра О, а вектор L O при изменении положения центра О может в общем случае изменяться.

Для плоской системы сил вместо векторного главного момента используют понятие алгебраического главного момента. Алгебраическим главным моментом L O плоской системы сил относительно центра О, лежащего в плоскости действия сил, называют сумму алгебраических моментов э тих сил относительно центра О.

Главный вектор и главный момент плоской системы сил обычно вычисляется аналитическими методами.

Просмотр: эта статья прочитана 24574 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Обзор

Какое-либо кинематическое состояние тел, имеющих точку или ось вращения, можно описать моментом силы, характеризующим вращательный эффект действия силы.

Момент силы относительно центра - это векторное произведение радиус - вектора точки приложения силы на вектор силы.

Плечо силы - кратчайшее расстояние от центра до линии действия силы (перпендикуляр из центра на линию действия силы).

Вектор направляется по правилу векторного произведения: момент силы относительно центра (точки) как вектор направлен перпендикулярно плоскости, в которой расположены сила и центр так, чтобы с его конца было видно, что сила пытается вращать тело вокруг центра против хода часовой стрелки.

Единицей измерения момента силы есть 1

Момент силы относительно центра в плоскости - алгебраическая величина, которая равняется произведению модуля силы на плечо относительно того же центра с учетом знака.

Знак момента силы зависит от направления, в котором сила пытается вращать вокруг центра:

  • против хода часовой стрелки -„−” (отрицательный)
  • по часовой стрелке -„+” (положительный);

Свойства момента силы относительно центра (точки ).

  1. Модуль момента силы относительно точки равняется удвоенной площади треугольнику построенного на векторах.
  2. Момент силы относительно точки не изменяется при перенесении силы вдоль ее линии действия, поскольку неизменным остается плечо силы.
  3. Момент силы относительно центра (точки) равняется нулю, если:
  • сила равняется нулю F = 0;
  • плечо силы h = 0, т.е. линия действия силы проходит через центр.

Теорема Вариньона (о моменте равнодействующей).

Момент равнодействующей плоской системы сходящихся сил относительно какого-либо центра равняется алгебраической сумме моментов составляющих сил системы относительно того же центра.


Теория пар сил

Сложение двух параллельных сил, направленных в одну сторону.

Равнодействующая системы двух параллельных сил направленных в одну сторону равняется по модулю сумме модулей составляющих сил, параллельна им и направлена в том же направлении.

Линия действия равнодействующей проходит между точками приложения составляющих на расстояниях от этих точек, обратно пропорциональных к силам

Сложение двух параллельных сил, направленных в разные стороны (случай сил разных по модулю)

Равнодействующая двух параллельных, неравных по модулю, противоположно направленных сил параллельна им и направлена в направлении большей силы и по модулю равняется разности составляющих сил.

Линия действия равнодействующей проходит за пределами отрезка (со стороны большей силы), соединяющего точки их приложения, и отстоит от них на расстояния, обратно пропорциональные силам.

Пара сил - система двух параллельных, равных по модулю и противоположных по направлению сил, приложенных к абсолютно твердому телу.

Плечо пары сил - расстояние между линиями действия сил пары, т.е. длина перпендикуляра, проведенного из произвольной точки линии действия одной из сил пары на линию действия второй силы.

Плоскость действия пары сил - это плоскость, в которой расположены линии действий сил пары.
Действие пары сил сводится к вращательному движению, которое определяется моментом пары.

Моментом пары называется вектор с такими признаками:

  • он перпендикулярен плоскости пары;
  • направлен в ту сторону, откуда вращение, которое осуществляет пара, видно против часовой стрелки;
  • его модуль равняется произведению модуля одной из сил пары на плечо пары с учетом знака

Знак момента пары сил:

  • „+” - вращение против часовой стрелки
  • „-„ - вращение по часовой стрелке

Момент пары сил равняется произведению модуля одной из сил пары на плечо пары.

Момент пары - свободный вектор - для него ни точка приложения, ни линия действия не обозначены, они могут быть произвольными.

Свойство момента пары сил: момент пары равняется моменту одной из сил относительно точки приложения второй силы.

Теоремы о паре сил

Теорема 1. Пара сил не имеет равнодействующей, т.е. пару сил нельзя заменить одной силой.

Теорема 2. Пара сил не является системой уравновешенных сил.

Следствие : пара сил, действующая на абсолютно твердое тело, старается вращать его.

Теорема 3. Сумма моментов сил пары относительно произвольного центра (точки) в пространстве является величиной неизменной и представляет собой вектор-момент этой пары.

Теорема 4. Сумма моментов сил, которые составляют пару, относительно произвольного центра в плоскости действия пары не зависит от центра и равняется произведению силы на плечо пары с учетом знака, т.е. самому моменту пары.

Теорема 5 - об эквивалентности пар. Пары сил, моменты которых равны численно и по знаку, являются эквивалентными. Т.е. пару сил можно заменить или уравновесить только другой эквивалентной парой сил.

Теорема 6 - об уравновешенности пары сил. Пара сил составляет уравновешенную систему сил тогда и только тогда, когда момент пары равняется нулю.

Теорема 7 - о возможностях перемещения пары сил в плоскости ее действия. Пара сил, полученная перемещениям пары в любое место в плоскости ее действия, эквивалентна предоставленной паре.

Теорема 8 - о добавлении пар сил в плоскости. Момент пары, эквивалентной предоставленной системе пар в плоскости, равняется алгебраической сумме моментов составляющих пар. Т.е. для сложения пар сил необходимо сложить их моменты.

Условия равновесия системы пар сил.

Пары сил в плоскости уравновешиваются в том случае, если алгебраическая сумма их моментов равняется нулю.

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении