Структуры лимбической системы и неокортекса. Строение и функции коры головного мозга Функции старой и новой коры

Кора головного мозга - высший отдел центральной нервной системы, обеспечивающий функционирование организма как единого целого при его взаимодействии с окружающей средой.

головного мозга (кора большого мозга, новая кора) представляет собой слой серого вещества, состоящего из 10-20 млрд и покрывающего большие полушария (рис. 1). Серое вещество коры составляет более половины всего серого вещества ЦНС. Суммарная площадь серого вещества коры — около 0,2 м 2 , что достигается извилистой складчатостью ее поверхности и наличием борозд разной глубины. Толщина коры в ее разных участках колеблется от 1,3 до 4,5 мм (в передней центральной извилине). Нейроны коры располагаются в шести слоях, ориентированных параллельно ее поверхности.

В участках коры, относящихся к , имеются зоны с трехслойным и пятислойным расположением нейронов в структуре серого вещества. Эти участки филогенетически древней коры занимают около 10% поверхности полушарий мозга, остальные 90% составляют новую кору.

Рис. 1. Моля латеральной поверхности коры большого мозга (по Бродману)

Строение коры головного мозга

Кора большого мозга имеет шестислойное строение

Нейроны разных слоев различаются по цитологическим признакам и функциональным свойствам.

Молекулярный слой — самый поверхностный. Представлен небольшим числом нейронов и многочисленными ветвящимися дендритами пирамидных нейронов, лежащих в более глубоких слоях.

Наружный зернистый слой сформирован плотно расположенными многочисленными мелкими нейронами разной формы. Отростки клеток этого слоя образуют кортикокортикальные связи.

Наружный пирамидальный слой состоит из пирамидных нейронов средней величины, отростки которых также участвуют в образовании кортикокортикальных связей между соседними областями коры.

Внутренний зернистый слой подобен второму слою по виду клеток и расположению волокон. В слое проходят пучки волокон, связывающие различные участки коры.

К нейронам этого слоя проводятся сигналы от специфических ядер таламуса. Слой очень хорошо представлен в сенсорных областях коры.

Внутренний пирамидный слои образован средними и крупными пирамидными нейронами. В двигательной области коры эти нейроны особенно крупные (50-100 мкм) и получили название гигантских, пирамидных клеток Беца. Аксоны этих клеток формируют быстропроводящие (до 120 м/с) волокна пирамидного тракта.

Слой полиморфных клеток представлен преимущественно клетками, аксоны которых образуют кортикоталамические пути.

Нейроны 2-го и 4-го слоев коры участвуют в восприятии, переработке поступающих к ним сигналов от нейронов ассоциативных областей коры. Сенсорные сигналы из переключающих ядер таламуса поступают преимущественно к нейронам 4-го слоя, выраженность которого наибольшая в первичных сенсорных областях коры. К нейронам 1-го и других слоев коры поступают сигналы из других ядер таламуса, базальных ганглиев, ствола мозга. Нейроны 3-го, 5-го и 6-го слоев формируют эфферентные сигналы, посылаемые в другие области коры и по нисходящим путям в нижележащие отделы ЦНС. В частности, нейроны 6-го слоя формируют волокна, следующие в таламус.

В нейронном составе и цитологических особенностях разных участков коры имеются значительные отличия. По этим отличиям Бродман разделил кору на 53 цитоархитектонических поля (см. рис. 1).

Расположение многих из этих нолей, выделенных на основе гистологических данных, совпадает по топографии с расположением корковых центров, выделенных на основе выполняемых ими функций. Используются и другие подходы деления коры на области, например, на основе содержания в нейронах определенных маркеров, по характеру нейронной активности и другим критериям.

Белое вещество полушарий головного мозга образовано нервными волокнами. Выделяют ассоциативные волокна, подразделяемые на дугообразные волокна, но которым сигналы передаются между нейронами рядом лежащих извилин и длинные продольные пучки волокон, доставляющие сигналы к нейронам более удаленных участков одноименного полушария.

Комиссуральные волокна - поперечные волокна, передающие сигналы между нейронами левого и правого полушарий.

Проекционные волокна - проводят сигналы между нейронами коры и других отделов мозга.

Перечисленные виды волокон участвуют в создании нейронных цепей и сетей, нейроны которых расположены на значительных расстояниях друг от друга. В коре имеется также особый вид локальных нейронных цепей, образованных рядом расположенными нейронами. Эти нейронные структуры получили название функциональных кортикальных колонок. Нейронные колонки образованы группами нейронов, расположенных друг над другом перпендикулярно поверхности коры. Принадлежность нейронов к одной и той же колонке можно определить по повышению их электрической активности на раздражение одного и того же рецептивного поля. Такая активность регистрируется при медленном перемещении регистрирующего электрода в коре в перпендикулярном направлении. Если регистрировать электрическую активность нейронов, расположенных в горизонтальной плоскости коры, то отмечается повышение их активности при раздражении различных рецептивных полей.

Диаметр функциональной колонки составляет до 1 мм. К нейронам одной функциональной колонки поступают сигналы от одного и того же афферентного таламокортикального волокна. Нейроны соседних колонок связаны друг с другом отростками, с помощью которых обмениваются информацией. Наличие в коре таких взаимосвязанных функциональных колонок увеличивает надежность восприятия и анализа информации, поступающей к коре.

Эффективность восприятия, обработки и использования информации корой для регуляции физиологических процессов обеспечивается также соматотопическим принципом организации сенсорных и моторных полей коры. Суть такой организации заключается в том, что в определенной (проекционной) области коры представлены не любые, а топографически очерченные участки рецептивного поля поверхности тела, мышц, суставов или внутренних органов. Так, например, в соматосенсорной коре поверхность тела человека спроецирована в виде схемы, когда в определенной точке коры представлены рецептивные поля конкретной области поверхности тела. Строгим топографическим образом в первичной моторной коре представлены эфферентные нейроны, активация которых вызывает сокращение определенных мышц тела.

Полям коры присущ также экранный принцип функционирования. При этом рецепторный нейрон посылает сигнал не на одиночный нейрон или в одиночную точку коркового центра, а на сеть или ноле нейронов, связанных отростками. Функциональными ячейками этого поля (экрана) являются колонки нейронов.

Кора мозга, формируясь на поздних этапах эволюционного развития высших организмов, в определенной мере подчинила себе все нижележащие отделы ЦНС и способна корригировать их функции. В то же время функциональная активность коры больших полушарий определяется притоком к ней сигналов от нейронов ретикулярной формации ствола мозга и сигналов от рецептивных полей сенсорных систем организма.

Функциональные области коры мозга

По функциональному признаку в коре выделяют сенсорные, ассоциативные и двигательные области.

Сенсорные (чувствительные, проекционные) области коры

Они состоят из зон, содержащих нейроны, активация которых афферентными импульсами от сенсорных рецепторов или прямым воздействием раздражителей вызывает появление специфических ощущений. Эти зоны имеются в затылочной (поля 17-19), теменной (ноля 1-3) и височной (поля 21-22, 41-42) областях коры.

В сенсорных зонах коры выделяют центральные проекционные поля, обеспечивающие топкое, четкое восприятие ощущений определенных модальностей (свет, звук, прикосновение, тепло, холод) и вторичные проекционные ноля. Функцией последних является обеспечение понимания связи первичного ощущения с другими предметами и явлениями окружающего мира.

Зоны представительства рецептивных полей в сенсорных зонах коры в значительной мере перекрываются. Особенность нервных центров в области вторичных проекционных полей коры — их пластичность, которая проявляется возможностью перестройки специализации и восстановления функций после повреждения какого-либо из центров. Эти компенсаторные возможности нервных центров особенно выражены в детском возрасте. В то же время повреждение центральных проекционных полей после перенесенных заболевании, сопровождается грубым нарушением функций чувствительности и часто невозможностью ее восстановления.

Зрительная кора

Первичная зрительная кора (VI, поле 17) располагается по обеим сторонам шпорной борозды на медиальной поверхности затылочной доли головного мозга. В соответствии с выявлением па неокрашенных срезах зрительной коры чередующихся белых и темных полос ее называют также стриарной (полосатой) корой. К нейронам первичной зрительной коры посылают зрительные сигналы нейроны латерального коленчатого тела, которые получают сигналы от ганглиозных клеток сетчатки. Зрительная кора каждого полушария получает визуальные сигналы от ипсилатеральной и контралатеральной половин сетчатки обоих глаз и их поступление к нейронам коры организовано по соматотопическому принципу. Нейроны, к которым поступают зрительные сигналы от фоторецепторов, топографически расположены в зрительной коре подобно рецепторам в сетчатке глаза. При этом область желтого пятна сетчатки имеет относительно большую зону представительства в коре, чем другие области сетчатки.

Нейроны первичной зрительной коры ответственны за зрительное восприятие, которое на основе анализа входных сигналов проявляется их способностью обнаруживать зрительный стимул, определять его специфическую форму и ориентацию в пространстве. Упрощенно можно представить сенсорную функцию зрительной коры в решении задачи и ответе на вопрос, что представляет собой зрительный объект.

В анализе других качеств зрительных сигналов (например, расположения в пространстве, движения, связи с другими событиями и т.д.) принимают участие нейроны полей 18 и 19 экстрастриарной коры, расположенных но соседству с нолем 17. Информация о сигналах, поступивших в сенсорные зрительные зоны коры, передастся для дальнейшего анализа и использования зрения для выполнения других функций мозга в ассоциативные области коры и другие отделы мозга.

Слуховая кора

Расположена в латеральной борозде височной доли в области извилины Гешля (AI, поля 41-42). К нейронам первичной слуховой коры поступают сигналы от нейронов медиальных коленчатых тел. Волокна слуховых путей, проводящие звуковые сигналы в слуховую кору, организованы тонотопически, и это позволяет нейронам коры получать сигналы от определенных слуховых рецепторных клеток кортиева органа. Слуховая кора регулирует чувствительность слуховых клеток.

В первичной слуховой коре формируются звуковые ощущения и проводится анализ отдельных качеств звуков, позволяющий ответить на вопрос, что представляет собой воспринятый звук. Первичная слуховая кора играет важную роль в анализе коротких звуков, интервалов между звуковыми сигналами, ритма, звуковой последовательности. Более сложный анализ звуков осуществляется в ассоциативных областях коры, смежных с первичной слуховой. На основе взаимодействия нейронов этих областей коры осуществляется бинауральный слух, определяются характеристики высоты, тембра, громкости звука, принадлежность звука, формируется представление о трехмерном звуковом пространстве.

Вестибулярная кора

Располагается в верхней и средней височных извилинах (поля 21-22). К ее нейронам поступают сигналы от нейронов вестибулярных ядер ствола мозга, связанных афферентными связями с рецепторами полукружных каналов вестибулярного аппарата. В вестибулярной коре формируется ощущение о положении тела в пространстве и ускорении движений. Вестибулярная кора взаимодействует с мозжечком (через височно-мостомозжечковый путь), участвует в регуляции равновесия тела, приспособлении позы к осуществлению целенаправленных движений. На основе взаимодействия этой области с соматосенсорной и ассоциативными областями коры происходит осознание схемы тела.

Обонятельная кора

Расположена в области верхней части височной доли (крючок, ноля 34, 28). Кора включает ряд ядер и относится к структурам лимбической системы. Ее нейроны расположены в трех слоях и получают афферентные сигналы от митральных клеток обонятельной луковицы, связанных афферентными связям с обонятельными рецепторными нейронами. В обонятельной коре проводится первичный качественный анализ запахов и формируется субъективное ощущение запаха, его интенсивности, принадлежности. Повреждение коры ведет к снижению обоняния или к развитию аносмии — потере обоняния. При искусственном раздражении этой области возникают ощущения различных запахов по типу галлюцинаций.

Вкусовая кора

Расположена в нижней части соматосенсорной извилины, непосредственно кпереди от области проекции лица (поле 43). Ее нейроны получают афферентные сигналы от релейных нейронов таламуса, которые связаны с нейронами ядра одиночного тракта продолговатого мозга. К нейронам этого ядра поступают сигналы непосредственно от чувствительных нейронов, образующих синапсы на клетках вкусовых луковиц. Во вкусовой коре проводится первичный анализ вкусовых качеств горького, соленого, кислого, сладкого и на основе их суммации формируется субъективное ощущение вкуса, его интенсивности, принадлежности.

Сигналы запахов и вкуса достигают нейронов передней части островковой коры, где на основе их интеграции формируется новое, более сложное качество ощущений, определяющее наше отношение к источникам запаха или вкуса (например, к пище).

Соматосенсорная кора

Занимает область постцентральной извилины (SI, поля 1-3), включая парацентральную дольку на медиальной стороне полушарий (рис. 9.14). В соматосенсорную область поступают сенсорные сигналы от нейронов таламуса, связанных спиноталамическими путями с рецепторами кожи (тактильная, температурная, болевая чувствительность), проприорецепторами (мышечных веретен, суставных сумок, сухожилий) и интерорецепторами (внутренних органов).

Рис. 9.14. Важнейшие центры и области коры большого мозга

Из-за перекреста афферентных путей в соматосенсорную зону левого полушария приходит сигнализация от правой стороны тела, соответственно в правое полушарие — от левой стороны тела. В этой сенсорной области коры соматотопически представлены все части тела, но при этом наиболее важные рецептивные зоны пальцев рук, губ, кожи лица, языка, гортани занимают относительно большие площади, чем проекции таких поверхностей тела, как спина, передняя часть туловища, ноги.

Расположение представительства чувствительности частей тела вдоль постцентральной извилины часто называют «перевернутый гомункулюс», так как проекция головы и шеи находится в нижней части постцентральной извилины, а проекция каудальной части туловища и ног — в верхней части. При этом чувствительность голеней и стоп проецируется на кору пара- центральной дольки медиальной поверхности полушарий. Внутри первичной соматосенсорной коры имеется определенная специализация нейронов. Например, нейроны поля 3 получают преимущественно сигналы от мышечных веретен и механорецепторов кожи, поля 2 — от рецепторов суставов.

Кору постцентральной извилины относят к первичной соматосенсорной области (SI). Ее нейроны посылают обработанные сигналы к нейронам вторичной соматосенсорной коры (SII). Она располагается кзади от постцентральной извилины в теменной коре (поля 5 и 7) и принадлежит к ассоциативной коре. Нейроны SII не получают прямых афферентных сигналов от нейронов таламуса. Они связаны с нейронами SI и нейронами других областей коры мозга. Это позволяет проводить здесь интегральную оценку сигналов, попадающих в кору по спиноталамическому пути с сигналами, поступающими из других (зрительной, слуховой, вестибулярной и т.д.) сенсорных систем. Важнейшей функцией этих полей теменной коры является восприятие пространства и трансформация сенсорных сигналов в координаты моторных. В теменной коре формируется стремление (намерение, побуждение) осуществить моторное действие, что является основой для начала планирования в ней предстоящей моторной активности.

Интеграция различных сенсорных сигналов связана с формированием различных ощущений, адресуемых к разным частям тела. Эти ощущения используются как для формирования психических, так и других ответных реакций, примерами которых могут быть движения при одновременном участии мышц обеих сторон тела (например, перемещение, ощупывание обеими руками, хватание, однонаправленное движение обеими руками). Функционирование этой области необходимо для узнавания предметов на ощупь и определения пространственного расположения этих предметов.

Нормальная функция соматосенсорных областей коры является важным условием формирования таких ощущений как тепло, холод, боль и их адресации к определенной части тела.

Повреждение нейронов области первичной соматосенсорной коры ведет к снижению различных видов чувствительности на противоположной стороне тела, а локальное повреждение — к потере чувствительности в определенной части тела. Особенно ранимой при повреждении нейронов первичной соматосенсорной коры является дискриминационная чувствительность кожи, а наименее — болевая. Повреждение нейронов вторичной соматосенсорной области коры может сопровождаться нарушением способности распознания предметов на ощупь (тактильная агнозия) и навыков использования предметов (апраксия).

Двигательные области коры

Около 130 лет тому назад исследователи, нанося точечные раздражения на кору мозга электрическим током, обнаружили, что воздействие на поверхность передней центральной извилины вызывает сокращение мышц противоположной стороны тела. Так было обнаружено наличие одной из моторных зон коры мозга. В последующем оказалось, что к организации движений имеют отношение несколько областей коры мозга и его другие структуры, а в областях моторной коры имеются не только двигательные нейроны, но и нейроны, осуществляющие другие функции.

Первичная моторная кора

Первичная моторная кора располагается в передней центральной извилине (MI, поле 4). Ее нейроны получают основные афферентные сигналы от нейронов соматосенсорной коры — полей 1, 2, 5, премоторной коры и таламуса. Кроме того, через вентролатеральный таламус в MI посылают сигналы нейроны мозжечка.

От пирамидных нейронов Ml начинаются эфферентные волокна пирамидного пути. Часть волокон этого пути следует к моторным нейронам ядер черепных нервов ствола мозга (кортикобульбарный тракт), часть — к нейронам стволовых моторных ядер (красное ядро, ядра ретикулярной формации, стволовые ядра, связанные с мозжечком) и часть — к интер- и моторным нейронам спинного мозга (кортикоспинальный тракт).

Имеется соматотопическая организация расположения нейронов в MI, контролирующих сокращение разных мышечных групп тела. Нейроны, контролирующие мышцы ног и туловища, расположены в верхних участках извилины и занимают относительно малую площадь, а контролирующие мышцы рук, особенно пальцев, лица, языка и глотки расположены в нижних участках и занимают большую площадь. Таким образом, в первичной двигательной коре относительно большую площадь занимают те нейронные группы, которые управляют мышцами, осуществляющими разнообразные, точные, мелкие, тонко регулируемые движения.

Поскольку многие нейроны Ml увеличивают электрическую активность непосредственно перед началом произвольных сокращений, то первичной моторной коре отводят ведущую роль в контроле активности моторных ядер ствола и мотонейронов спинного мозга и инициации произвольных, целенаправленных движений. Повреждение поля Ml ведет к парезу мышц и невозможности осуществления тонких произвольных движений.

Вторичная моторная кора

Включает области премоторной и дополнительной моторной коры (МII, поле 6). Премоторная кора расположена в поле 6, на боковой поверхности мозга, кпереди от первичной моторной коры. Ее нейроны получают через таламус афферентные сигналы из затылочной, соматосенсорной, теменной ассоциативной, префронтальной областей коры и мозжечка. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в моторную кору MI, небольшое число — в спинной мозг и большее — в красные ядра, ядра ретикулярной формации, базальные ганглии и мозжечок. Премоторная кора играет основную роль в программировании и организации движений, находящихся под контролем зрения. Кора участвует в организации позы и вспомогательных движений для действий, осуществляемых дистальными мышцами конечностей. Повреждение прсмотор- ной коры часто вызывает тенденцию повторного выполнения начатого движения (персеверация), даже если осуществленное движение достигло цели.

В нижней части премоторной коры левой лобной доли, непосредственно кпереди от участка первичной моторной коры, в которой представлены нейроны, контролирующие мышцы лица, располагается речевая область , или моторный центр речи Брока. Нарушение ее функции сопровождается нарушением артикуляции речи, или моторной афазией.

Дополнительная моторная кора располагается в верхней части поля 6. Ее нейроны получают афферентные сигналы из соматосснсорной, теменной и префронтальной областей коры головного мозга. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в первичную моторную кору MI, спинной мозг, стволовые моторные ядра. Активность нейронов дополнительной моторной коры повышается раньше, чем нейронов коры MIи главным образом в связи с осуществлением сложных движений. При этом возрастание нейронной активности в дополнительной моторной коре не связано с движениями как таковыми, для этого достаточно мысленно представить модель предстоящих сложных движений. Дополнительная моторная кора принимает участие в формировании программы предстоящих сложных движений и в организации моторных реакций на специфичность сенсорных стимулов.

Поскольку нейроны вторичной моторной коры посылают множество аксонов в поле MI, ее считают в иерархии моторных центров организации движений более высокой структурой, стоящей над моторными центрами моторной коры MI. Нервные центры вторичной моторной коры могут оказывать влияние на активность моторных нейронов спинного мозга двумя путями: непосредственно через кортикоспинальный путь и через поле MI. Поэтому их иногда называют супрамоторными полями, в функцию которых входит инструктирование центров поля MI.

Из клинических наблюдений известно, что сохранение нормальной функции вторичной моторной коры важно для осуществления точных движений руки, и особенно для выполнения ритмических движений. Так, например, при их повреждении пианист перестает чувствовать ритм и выдерживать интервал. Нарушается способность к осуществлению противоположных движений руками (манипулирование обоими руками).

При одновременном повреждении моторных зон MI и MII коры утрачивается способность к тонким координированным движениям. Точечные раздражения в этих областях моторной зоны сопровождаются активацией не отдельных мышц, а целой группы мышц, вызывающих направленное движение в суставах. Эти наблюдения послужили поводом для формирования вывода о том, что в моторной коре представлены не столько мышцы, сколько движения.

Префронтальная кора

Располагается в области поля 8. Ее нейроны получают основные афферентные сигналы из затылочной зрительной, теменной ассоциативной коры, верхних холмиков четверохолмия. Обработанные сигналы передаются по эфферентным волокнам в премоторную кору, верхние холмики четверохолмия, стволовые моторные центры. Кора играет определяющую роль в организации движений, находящихся под контролем зрения и принимает непосредственное участие в инициации и контроле движений глаз и головы.

Механизмы, реализующие превращение замысла движения в конкретную моторную программу, в залпы импульсов, посылаемых к определенным мышечным группам, остаются недостаточно понятными. Считается, что замысел движения формируется благодаря функциям ассоциативной и других областей коры, взаимодействующих со многими структурами головного мозга.

Информация о замысле движения передается в двигательные области лобной коры. Двигательная кора через нисходящие пути активирует системы, обеспечивающие выработку и использование новых двигательных программ или использование старых, уже отработанных на практике и хранящихся в памяти. Составной частью этих систем являются базальные ганглии и мозжечок (см. их функции выше). Программы движения, выработанные при участии мозжечка и базальных ганглиев, передаются через таламус в моторные зоны и прежде всего в первичную моторную область коры. Эта область непосредственно инициирует исполнение движений, подключая к нему определенные мышцы и обеспечивая последовательность смены их сокращения и расслабления. Команды коры передаются на моторные центры ствола мозга, спинальные мотонейроны и мотонейроны ядер черепных нервов. Мотонейроны в осуществлении движений выполняют роль конечного пути, через который двигательные команды передаются непосредственно к мышцам. Особенности передачи сигналов от коры к моторным центрам ствола и спинного мозга описаны в главе, посвященной ЦНС (ствол мозга, спинной мозг).

Ассоциативные области коры

У человека ассоциативные области коры занимают около 50% площади всей коры большого мозга. Они располагаются в участках между сенсорными и двигательными областями коры. Ассоциативные области не имеют четких границ со вторичными сенсорными областями как по морфологическим, так и по функциональным признакам. Выделяют теменную, височную и лобную ассоциативные области коры больших полушарий.

Теменная ассоциативная область коры. Располагается в полях 5 и 7 верхней и нижней теменных долек мозга. Область граничит впереди с соматосенсорной корой, сзади — со зрительной и слуховой корой. К нейронам теменной ассоциативной области могут поступать и активировать их зрительные, звуковые, тактильные, проприоцептивные, болевые, сигналы из аппарата памяти и другие сигналы. Часть нейронов является полисенсорной и может повышать свою активность при поступлении к ней соматосенсорных и визуальных сигналов. Однако степень повышения активности нейронов ассоциативной коры на поступление афферентных сигналов зависит от текущей мотивации, внимания субъекта и информации, извлекаемой из памяти. Она остается незначительной, если поступающий из сенсорных областей мозга сигнал для субъекта безразличен, и существенно возрастает, если он совпал с имеющейся мотивацией и привлек его внимание. Например, при предъявлении обезьяне банана активность нейронов ассоциативной теменной коры остается невысокой, если животное сыто, и наоборот, активность резко возрастает у голодных животных, которым нравятся бананы.

Нейроны теменной ассоциативной коры связаны эфферентными связями с нейронами префронтальной, премоторной, моторной областей лобной доли и поясной извилины. Исходя из экспериментальных и клинических наблюдений, принято считать, что одной из функций коры поля 5 является использование соматосенсорной информации для осуществления целенаправленных произвольных движений и манипулирования объектами. Функцией коры поля 7 является интеграция визуальных и соматосенсорных сигналов для координации движений глаз и визуально-ведомых движений руки.

Нарушением этих функций теменной ассоциативной коры при повреждении ее связей с корой лобной доли или заболеванием самой лобной доли, объясняются симптомы последствий заболеваний, локализованных в области теменной ассоциативной коры. Они могут проявляться затруднением в понимании смыслового содержания сигналов (агнозия), примером которого может быть потеря способности распознавания формы и пространственного расположения объекта. Могут нарушаться процессы трансформации сенсорных сигналов в адекватные моторные действия. В последнем случае больной теряет навыки практического использования хорошо знакомых инструментов и предметов (апраксия), и у него может развиться невозможность осуществления визуально-ведомых движений (например, движение руки в направлении предмета).

Лобная ассоциативная область коры. Располагается в префронтальной коре, которая является частью коры лобной доли, локализующейся кпереди от полей 6 и 8. Нейроны лобной ассоциативной коры получают обработанные сенсорные сигналы по афферентным связям от нейронов коры затылочной, теменной, височной долей мозга и от нейронов поясной извилины. Лобная ассоциативная кора получает сигналы о текущем мотивационном и эмоциональном состояниях от ядер таламуса, лимбической и других структур мозга. Кроме того, лобная кора может оперировать абстрактными, виртуальными сигналами. Эфферентные сигналы ассоциативная лобная кора посылает обратно, в структуры мозга, от которых они были получены, в моторные области лобной коры, хвостатое ядро базальных ганглиев и гипоталамус.

Эта область коры играет первостепенную роль в формировании высших психических функций человека. Она обеспечивает формирование целевых установок и программ осознанных поведенческих реакций, узнавание и смысловую оценку предметов и явлений, понимание речи, логическое мышление. После обширных повреждений лобной коры у больных могут развиться апатия, снижение эмоционального фона, критичного отношения к своим собственным поступкам и поступкам окружающих, самодовольство, нарушение возможности использования прошлого опыта для изменения поведения. Поведение больных может стать непредсказуемым и неадекватным.

Височная ассоциативная область коры. Располагается в полях 20, 21, 22. Нейроны коры получают сенсорные сигналы от нейронов слуховой, экстрастриарной зрительной и префронтальной коры, гиппокампа и миндалины.

После двухстороннего заболевания височных ассоциативных областей с вовлечением в патологический процесс гиппокампа или связей с ним у больных могут развиться выраженные нарушения памяти, эмоционального поведения, неспособность сосредоточения внимания (рассеянность). У части людей при повреждении нижневисочной области, где предположительно располагается центр узнавания лица, может развиться зрительная агнозия — неспособность узнавания лиц знакомых людей, предметов, при сохранности зрения.

На границе височной, зрительной и теменной областей коры в нижней теменной и задней части височной доли располагается ассоциативный участок коры, получивший название сенсорного центра речи, или центра Вернике. После его повреждения развивается нарушение функции понимания речи при сохранности речедвигательной функции.

Так вот, площадь коры головного мозга одного полушария человека составляет около 800 -- 2200 кв. см., толщина -- 1,5?5 мм. Большая часть коры (2/3) залегает в глубине борозд и не видна снаружи. Благодаря такой организации мозга в процессе эволюции была получена возможность значительно увеличить площадь коры при ограниченном объеме черепа. Общее количество нейронов в коре может достигать 10 -- 15 млрд.

Сама же по себе кора больших полушарий неоднородна, поэтому в соответствии с филогенезом (по происхождению) различают древнюю кору (палеокортекс), старую кору (архикортекс), промежуточную(или среднюю) кору (мезокортекс) и новую кору (неокортекс).

Древняя кора

Древняя кора, (или палеокортекс) -- это наиболее просто устроина кора больших полушарий, которая содержит 2?3 слоя нейронов. Согласно ряду известных ученых таких как Х. Фениш, Р. Д. Синельникову и Я. Р. Синельникову указывающих, что древняя кора соответствует области мозга, каторая развивается из грушевидной доли, а также компонентами древней коры являются обонятельный бугорок и окружающая его кора, включающая участок переднего продырявленного вещества. В состав древней коры входят следующие структурные образования такие как препириформная, периамигдалярная область коры, диагональная кора и обонятельный мозг, включающий обонятельные луковицы, обонятельный бугорок, прозрачную перегородку, ядра прозрачной перегородки и свод.

Согласно М. Г. Привесу и ряду некоторых ученых обонятельный мозг топографически делится на два отдела включая в себя ряд образований и извилин.

1. периферический отдел (или обонятельная доля) в состав которого входят образования лежащие на основании мозга:

обонятельная луковица;

обонятельный тракт;

обонятельный треугольник (внутри которого располагается обонятельный бугорок т. е. вершина обонятельного треугольника);

внутренние и боковые обонятельные извилины;

внутренние и боковые обонятельные полоски (волокна внутренней полоски заканчиваются в подмозолистом поле паратерминальной извилине, прозрачной перегородке и в переднем продырявленном веществе, а волокна боковой полоски заканчиваются в парагиппокампальной извилине);

переднее продырявленное пространство, или вещество;

диагональная полоска, или полоска Брока.

2. центральный отдел входят три извилины:

парагиппокампальная извилина (извилина гиппокампа, или извилина морского конька);

зубчатая извилина;

поясная извилина (включая ее переднею часть -- крючек).

Старая и промежуточная кора

Старая кора (или архикортекс) -- эта кора появляется позже древней коре и содержит в себе только три слоя нейронов. В ее состав входят гиппокамп (морской конек или аммонов рог) с его, основанием, зубчатая извилина и поясная извилина. кора головной мозг нейрон

Промежуточная кора (или мезокортекс) -- представляющая собой пятислойные участи коры, отделяющие новую кору (неокортекс), от древней коры (палеокортекса) и старой коры (архикортекса) и из-за этого среднюю кору делят на две зоны:

  • 1. перипалеокортикальная;
  • 2. периархиокортикальная.

В состав мезокортекса согласно В. М. Покровскому и Г. А. Кураеву входят остарвковая, а также в энториальной области граничащая со старой корой парагиппокампальная извилина и предоснование гиппокампа.

В промежуточную кору по мнению Р. Д. Синельникова и Я. Р. Синельникова входят такие образования как нижний отдел остравковой доли, парагиппокампальная извилина и нижний отдел лимбической области коры. Но при этом необходимо понимать, что под лимбической областью понимают часть новой коры полушарий большого мозга, которая занимает поясную и парагиппокампальную извилины. Так же есть мнение, что промежуточная кора -- это неполностью дифференцированная зона коры остравка (или висцеральная кора).

Из-за неоднозначности такой трактовки структур относящихся к древней и старой коре перевела к целесообразности использования объединенного понятия как архиопалеокортекс.

Структуры архиопалеокортекса имеют множественные связи, как между собой, так и сдругими образованиями мозга.

Новая кора

Новая кора (или неокортекс) -- филогенетически, т. е. по своему происхождению -- это наиболее позднее образование головного мозга. Из-за более позднего эволюционного возникновения и бурного развития новой коры головного мозга в ее организации сложных форм высшей нервной деятельности и высший иерархический ее уровень который вертикально согласованный с деятельностью центральной нервной системой составляя при этом наиболее особенности этого отдела мозга. Особенности новой коры вот уже много лет привлекает и продолжает удерживать внимание множество исследователей изучающих физиологию коры больших полушарий головного мозга. В настоящее время на смену старых представлениям о монопольном участии новой коры в формировании сложных форм поведения, в том числе условных рефлексов, пришло представление о ней, как высшем уровне таламокортикальных систем, функционирующих совместно с таламусом, лимбической и другими системами головного мозга. Новая кора участвует в психическом переживании внешнего мира -- его восприятия и создания его образов, которые сохраняются на более или менее долгое время.

Особенность структуры новой коры является экранный принцип ее организации. Главное в этом принципе -- организации нейронных систем заключается в геометрическом распределении проекций высших рецепторных полей на большой поверхности нейронального поля коры. Также для экранной организации характерная организация клеток и волокон, которые идут перпендикулярно поверхности или параллельно ей. Такая ориентация нейронов коры обеспечивает возможности для объединения нейронов в группировки.

Что касается клеточного состава в новой коре то он очень многообразен, величина нейронов примерно от 8?9 мкм до 150 мкм. Преобладающее большинство клеток относится к двум типам это -- прирамидным и звездчатым. Также в новой коре имеются и веретенообразные нейроны.

Для того чтобы лучше рассмотреть особенности микроскопического строения коры больших полушарий необходимо обратиться к архитектонике. Под микроскопическим строением различают цитоархитектонику (клеточное строение) и миелоархитектонику (волокнистое строение коры). Начало изучения архитектоники коры больших полушарий относится к концу XVIII века, когда в 1782 г. Дженнари впервые обнаружил неоднородность строения коры в затылочных долях полушарий. В 1868 г. Мейнерт разделил поперечник коры полушарий на слои. В России первым исследователем коры былВ. А. Бец (1874), открывший крупные пирамидные нейроны в 5 слое коры в области предцентральной извилины, названные его именем. Но, есть и другое разделение коры головного мозга -- так называемая карта полей Бродмана. В 1903 году германский анатом, физиолог, психолог и психиатр К. Бродман опубликовал описание пятидесяти двух цитоархитектонических полей, которые представляют собой участки коры головного мозга, различные по своему клеточному строению. Каждое такое поле отличается по величине, форме, расположению нервных клеток и нервных волокон и, конечно же, различные поля связаны с различными функциями головного мозга. На основании описания этих полей и была составлена карта 52 полей Бродман

НЕОКОРТЕКС НЕОКОРТЕКС

(от нео... и лат. cortex- кора, скорлупа), новая кора, неопаллиум, осн. часть коры больших полушарий головного мозга. Н. осуществляет высший уровень координации работы мозга и формирования сложных форм поведения. В процессе эволюции Н. впервые появляется у пресмыкающихся, у к-рых он незначителен по размерам и сравнительно просто устроен (т. н. боковая кора). Типичное многослойное строение Н. получает только у млекопитающих, у к-рых он состоит из 6-7 слоев клеток (пирамидных, звёздчатых, веретенообразных) и подразделяется на доли: лобную, теменную, височную, затылочную и медиобазальную. В свою очередь, доли подразделяются на области, подобласти и поля, отличающиеся по клеточному строению и связям с глубокими отделами мозга. Наряду с проекционными (вертикальными) волокнами нейроны Н. образуют ассоциативные (горизонтальные) волокна, к-рые у млекопитающих и особенно у человека собраны в анатомически выраженные пучки (напр., затылочно-лобный пучок), обеспечивающие одновременную координированную активность разл. зон Н. В составе Н. выделяют наиб, сложно построенную ассоциативную кору, к-рая в процессе эволюции испытывает наибольшее увеличение, тогда как первичные сенсорные поля Н. относительно уменьшаются. (см. КОРА БОЛЬШИХ ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)


Смотреть что такое "НЕОКОРТЕКС" в других словарях:

    Неокортекс …

    Новая кора (синонимы: неокортекс, изокортекс) (лат. neocortex) новые области коры головного мозга, которые у низших млекопитающих только намечены, а у человека составляют основную часть коры. Новая кора располагается в верхнем слое полушарий… … Википедия

    неокортекс - 3.1.15 неокортекс: Новая кора головного мозга, обеспечивающая осуществление интеллектуальной мыслительной деятельности мышлением человека. 3.1.16 Источник … Словарь-справочник терминов нормативно-технической документации

    - (neocortex; нео + лат. cortex кора) см. Кора новая … Большой медицинский словарь

    неокортекс - у, ч. Еволюційно найновіша і найскладніша з нервових тканин, з якої складаються лобові, тім яні, скроневі та потиличні частки мозку … Український тлумачний словник

    НЕОКОРТЕКС (НОВАЯ КОРА) - Эволюционно самая новая и наиболее сложная из нервных тканей. Лобные, теменные, височные и затылочные доли мозга состоят из неокортекса … Толковый словарь по психологии

    Архи, палео, неокортекс … Орфографический словарь-справочник

    кора головного мозга - мозг головной: кора (кора головного мозга) верхний слой полушарий мозга головного, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидные клетки), а также из пучков афферентных (центростремительных) и эфферентных… … Большая психологическая энциклопедия

    Термин кора (cortex) относится к любому наружному слою клеток головного мозга. Мозг млекопитающих имеет три вида коры: грушевидную кору (pyriform cortex), к рая обладает обонятельными функциями; старую кору (архикортекс), составляющую осн. часть… … Психологическая энциклопедия

Неокортекс - эволюциоипо самая молодая часть коры, занимающая большую часть поверхности полушарий. Ее толщина у человека составляет примерно 3 мм.

Клеточный состав неокоргекса очень разнообразен, но примерно три четверти нейронов коры составляют пирамидные нейроны (пирамиды), в связи с чем одна из основных классификаций нейронов коры делит их на пирамидные и неиирамидные (веретеновидные, звездчатые, зернистые, клетки-канделябры, клетки Мартинотти и др.). Другая классификация связана с длиной аксона (см. параграф 2.4). Длинноаксонные клетки Гольджи I - это в основном пирамиды и веретена, их аксоны могут выходить из коры, остальные клетки - короткоаксонные Гольджи II.

Корковые нейроны отличаются и по величине клеточного тела: размер сверхмалых нейронов 6x5 мкм, размер гигантских - больше чем 40 х 18. Самые крупные нейроны - пирамиды Беца, их размер 120 х 30-60 мкм.

Пирамидные нейроны (см. рис. 2.6, г) имеют форму тела в виде пирамиды, вершина которой направлена вверх. От этой вершины отходит апикальный дендрит, поднимающийся в вышележащие корковые слои. От остальных частей сомы отходят базальные дендриты. Все дендриты имеют шипики. От основания клетки отходит длинный аксон, образующий многочисленные коллатерали, в том числе и возвратные, которые загибаются и поднимаются вверх. У звездчатых клеток апикального дендрита нет, шипики на дендритах в большинстве случаев отсутствуют. У веретеновидных клеток от противоположных полюсов тела отходят два крупных дендрита, есть и мелкие дендриты, отходящие от остальных частей тела. Дендриты имеют шипики. Аксон длинный, маловетвящийся.

Во время эмбрионального развития новая кора обязательно проходит стадию шестислойного строения, при созревании в некоторых областях число слоев может уменьшаться. Глубокие слои филогенетически более древние, наружные слои более молодые. Каждый слой коры характеризуется своим нейронным составом и толщиной, которая в разных областях коры может отличаться друг от друга.

Перечислим слои новой коры (рис. 9.8).

I слой - молекулярный - самый наружный, содержит небольшое количество нейронов и в основном состоит из волокон, проходящих параллельно поверхности. Также сюда поднимаются дендриты нейронов, расположенных в нижележащих слоях.

II слой - наружный зернистый , или наружный гранулярный , - состоит главным образом из малых пирамидных нейронов и небольшого количества среднего размера звездчатых клеток.

III слой - наружный пирамидный - самый широкий и толстый слой, содержит в основном малые и среднего размера пирамидные и звездчатые нейроны. В глубине слоя располагаются крупные и гигантские пирамиды.

IV слой - внутренний зернистый , или внутренний гранулярный , - состоит главным образом из малых нейронов всех разновидностей, есть и немногочисленные крупные пирамиды.

V слой - внутренний пирамидный , или ганглиозный, характерной особенностью которого является присутствие крупных и в некоторых областях (главным образом в полях 4 и 6; рис. 9.9; подпараграф 9.3.4) - гигантских пирамидных нейронов (пирамид Беца). Апикальные дендриты пирамид, как правило, достигают I слоя.

VI слой - полиморфный , или мулътиформный, - содержит преимущественно веретенообразные нейроны, а также клетки всех других форм. Этот слой делят на два подслоя, которые ряд исследователей рассматривают как самостоятельные слои, говоря в этом случае о семислойной коре.

Рис. 9.8.

а - нейроны окрашены целиком; б - окрашены только тела нейронов; в - окрашены

только отростки нейронов

Основные функции каждого слоя также различаются. I и II слои осуществляют связи между нейронами разных слоев коры. Каллозальные и ассоциативные волокна главным образом идут от пирамид III слоя и приходят во II слой. Основные афферентные волокна, поступающие в кору из таламуса, оканчиваются на нейронах IV слоя. С системой нисходящих проекционных волокон главным образом связан V слой. Аксоны пирамид этого слоя образуют основные эфферентные пути коры больших полушарий.

В большинстве корковых полей одинаково хорошо выражены все шесть слоев. Такая кора называется гомотипической. Однако в некоторых полях в процессе развития выраженность слоев может изменяться. Такую кору называют гетеротипической. Она бывает двух типов:

гранулярная (ноля 3, 17, 41; рис. 9.9), в которой очень увеличено количество нейронов в наружном (II) и особенно во внутреннем (IV) зернистых слоях, в результате чего IV слой делят на три подслоя. Такая кора характерна для первичных сенсорных зон (см. ниже);

Агранулярная (поля 4 и 6, или моторная и премоторная кора; рис. 9.9), в которой, наоборот, очень узкий II слой и практически отсутствует IV, но зато очень широкие пирамидные слои, особенно внутренний (V).

Тема 14

Физиология головного мозга

Часть V

Новая кора больших полушарий

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 см 2 , покрывающий большие полушария конечного мозга. Она составляет около 40% массы головного мозга. В коре имеется около 14 млрд. нейронов и около 140 млрд. глиальных клеток. Кора головного мозга является филогенетически наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Структурно-функциональная характеристика коры . Кора больших полушарий состоит из шести горизонтальных слоев, расположенных в направлении с поверхности в глубь.

    Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

    Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Афферентные и эфферентные связи коры . В слоях I и IV происходят восприятие и обработка поступающих в кору сигналов. Нейроны II и III слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в V – VI слоях. Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков (формы и расположения нейронов) К.Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает 8, 9, 10, 11, 12, 44, 45, 46, 47 поля. В прецентральную область входят 4 и 6 поле, в постцентральную – 1, 2, 3, 43 поля. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная 17 18 19. Височная область состоит из очень большого количества цитоархитектонических полей: 20, 21, 22, 36, 37, 38, 41, 42, 52.

Рис.1. Цитоархитектонические поля коры головного мозга человека (по К.Бродману): а – наружная поверхность полушария; б – внутренняя поверхность полушария.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В моторной и различных зонах сенсорной коры имеются нейронные колонки диаметром 0,5-1,0 мм, которые представляют собой функциональное объединение нейронов. Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом по механизму латерального торможения и осуществлять саморегуляцию по типу возвратного торможения.

В филогенезе роль коры большого мозга в анализе и регуляции функций организма и подчинение себе нижележащих отделов ЦНС возрастает. Этот процесс называется кортиколизацией функций.

Проблема локализации функций имеет три концепции:

    Принцип узкого локализационизма – все функции помещены в одну, отдельно взятую структуру.

    Концепция эквипотенциализма – различные корковые структуры функционально равноценны.

    Принцип многофункциональности корковых полей. Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры больших полушарий . Сенсорные области коры – это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (вентральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные II и IVслои и называется гранулярной .

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями . Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

╠ Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий (поля 1-3), которую обозначают как первичная соматосенсорная область (S I). Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, проекция нижней части голени и стоп – в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела (см.рис.2). Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Кроме S I выделяют вторичную соматосенсорную область меньшую размером (S II). Она расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции S II изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

╠ Другой первичной сенсорной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах (поля 20 и 21). Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Рис.2. Схема чувствительного и двигательного гомункулусов. Разрез полушарий во фронтальной плоскости: а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре прецентральной извилины.

╠ Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры . Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры (поля 5, 7, 40), получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»), центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры (поля 9-14), имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством.; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры (поле 39). В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого доминантного полушария). Этот центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

Двигательные области коры . В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь (см.рис.2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора (поле 6) расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной течи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи, способность петь.

Афферентные и эфферентные связи моторной коры . В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки V слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток V слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ά-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ά-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины. Волокна пирамидного пути оканчиваются на ά-мотонейронах двигательных ядер III - VII и IX - XII черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре. Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения – в ассоциативной коре больших полушарий, программы движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения . Межполушарные взаимоотношения у человека проявляются в двух формах – функциональной асимметрии больших полушарий и совместной их деятельности.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга. При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения. В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.

Рис.3. Асимметрия полушарий мозга.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными. Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.

Мозга на основании новейших анатомических... влияния коры больших полушарий на кору мозжечка. Низшие рефлекторные центры спинного мозга и стволовой части головного мозга ...

  • Г. А. Петров физиология с основами анатомии

    Документ

    ... КОРЫ БОЛЬШИХ ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА Модуль 3. СЕНСОРНЫЕ СИСТЕМЫ ЧЕЛОВЕКА 3.1. Общая физиология ... нового ... 14 . жизненно важная часть дыхательного центра расположена в спинном мозге заднем мозге среднем мозге промежуточном мозге коре больших полушарий ...

  • Н. П. Реброва Физиология сенсорных систем

    Учебно-методическое пособие

    Входит составной частью в естественнонаучные дисциплины «Анатомия и физиология человека», «Физиология сенсорных систем... в головной мозг . Эти пути начинаются в спинном мозге , переключаются в таламусе и далее направляются к коре больших полушарий . ...

  • Анастасии Новых «Сэнсэй. Исконный Шамбалы» (2)

    Документ

    Среднего мозга , под­корковых отделов коры больших полушарий и мозжечка... из самых загадочных частей головного мозга и человека в... трамвай. 14 Выехали мы... зарождении новых душ, созданию новых «личинок... историком, востоковедом, физиологом . Но простым косто...