Метод математической индукции калькулятор онлайн. Принцип математической индукции. Решение примеров Метод математической индукции равносильные формулировки

Метод доказательства, о котором будет идти речь в данном пункте, основан на одной из аксиом натурального ряда.

Аксиома индукции. Пусть дано предложение, зависящее от переменной п, вместо которой можно подставлять любые натуральные числа. Обозначим его А(п). Пусть также предложение А верно для числа 1 и из того, что А верно для числа к , следует, что А верно для числа к+ 1. Тогда предложение А верно для всех натуральных значений п.

Символическая запись аксиомы:

Здесь пик- переменные по множеству натуральных чисел. Из аксиомы индукции получается следующее правило вывода:

Итак, для того чтобы доказать истинность предложения А, можно вначале доказать два утверждения: истинность высказывания А( 1), а также следствие А(к) => А(к+ 1).

Учитывая сказанное выше, опишем сущность метода

математической индукции.

Пусть требуется доказать, что предложение А(п) верно для всех натуральных п. Доказательство разбивается на два этапа.

  • 1- й этап. База индукции. Берем в качестве значения п число 1 и проверяем, что А( 1) есть истинное высказывание.
  • 2- й этап. Индуктивный переход. Доказываем, что при любом натуральном числе к верна импликация: если А{к ), то А(к+ 1).

Индуктивный переход начинается словами: «Возьмем произвольное натуральное число к, такое, что А(к)», или «Пусть для натурального числа к верно А(к)». Вместо слова «пусть» часто говорят «предположим, что...».

После этих слов буква к обозначает некий фиксированный объект, для которого выполняется соотношение А{к). Далее из А(к) выводим следствия, то есть строим цепочку предложений А(к) 9 Р , Pi, ..., Р„ = А(к+ 1), где каждое предложение Р, является истинным высказыванием или следствием предыдущих предложений. Последнее предложение Р„ должно совпадать с А(к+ 1). Отсюда заключаем: из А{к) следует А(к+ ).

Выполнение индуктивного перехода можно расчленить на два действия:

  • 1) Индуктивное предположение. Здесь мы предполагаем, что А к переменной н.
  • 2) На основе предположения доказываем, что А верно для числа?+1.

Пример 5.5.1. Докажем, что число п+п является четным при всех натуральных п.

Здесь А(п) = «п 2 +п - четное число». Требуется доказать, что А - тождественно истинный предикат. Применим метод математической индукции.

База индукции. Возьмем л=1. Подставим в выражение п +//, получим n 2 +n = I 2 + 1 = 2 - четное число, то есть /1(1) - истинное высказывание.

Сформулируем индуктивное предположение А{к) = «Число к 2 +к - четное». Можно сказать так: «Возьмем произвольное натуральное число к такое, что к 2 +к есть четное число».

Выведем отсюда утверждение А(кА-) = «Число (к+ 1) 2 +(?+1) - четное».

По свойствам операций выполним преобразования:

Первое слагаемое полученной суммы четно по предположению, второе четно по определению (так как имеет вид 2п). Значит, сумма есть четное число. Предложение А(к+ 1) доказано.

По методу математической индукции делаем вывод: предложение А(п) верно для всех натуральных п.

Конечно, нет необходимости каждый раз вводить обозначение А(п). Однако все же рекомендуется отдельной строкой формулировать индуктивное предположение и то, что требуется из него вывести.

Заметим, что утверждение из примера 5.5.1 можно доказать без использования метода математической индукции. Для этого достаточно рассмотреть два случая: когда п четно и когда п нечетно.

Многие задачи на делимость решаются методом математической индукции. Рассмотрим более сложный пример.

Пример 5.5.2. Докажем, что число 15 2и_| +1 делится на 8 при всех натуральных п.

Бача индукции. Возьмем /1=1. Имеем: число 15 2|_| +1 = 15+1 = 16 делится на число 8.

, что для некоторого

натурального числа к число 15 2 * ’+1 делится на 8.

Докажем , что тогда число а = 15 2(ЖН +1 делится 8.

Преобразуем число а:

По предположению, число 15 2А1 +1 делится на 8, значит, все первое слагаемое делится на 8. Второе слагаемое 224=8-28 также делится на 8. Таким образом, число а как разность двух чисел, кратных 8, делится на 8. Индуктивный переход обоснован.

На основе метода математической индукции заключаем, что для всех натуральных п число 15 2 " -1 -*-1 делится на 8.

Сделаем некоторые замечания по решенной задаче.

Доказанное утверждение можно сформулировать немного по-другому: «Число 15”"+1 делится на 8 при любых нечетных натуральных /и».

Во-вторых, из доказанного общего утверждения можно сделать частный вывод, доказательство которого может быть дано как отдельная задача: число 15 2015 +1 делится на 8. Поэтому иногда бывает полезно обобщить задачу, обозначив какое-то конкретное значение буквой, а затем применить метод математической индукции.

В самом общем понимании термин «индукция» означает, что на основе частных примеров делают общие выводы. Например, рассмотрев некоторые примеры сумм четных чисел 2+4=6, 2+8=10, 4+6=10, 8+12=20, 16+22=38, делаем вывод о том, что сумма любых двух четных чисел есть четное число.

В общем случае вот такая индукция может привести к неверным выводам. Приведем пример подобного неправильного рассуждения.

Пример 5.5.3. Рассмотрим число а = /г+я+41 при натуральном /?.

Найдем значения а при некоторых значениях п.

Пусть п= I. Тогда а = 43 - простое число.

Пусть /7=2. Тогда а = 4+2+41 = 47 - простое.

Пусть л=3. Тогда а = 9+3+41 = 53 - простое.

Пусть /7=4. Тогда а = 16+4+41 = 61 - простое.

Возьмите в качестве значений п следующие за четверкой числа, например 5, 6, 7, и убедитесь, что число а будет простым.

Делаем вывод: «При всех натуральных /? число а будет простым».

В результате получилось ложное высказывание. Приведем контрпример: /7=41. Убедитесь, что при данном п число а будет составным.

Термин «математическая индукция» несет в себе более узкий смысл, так как применение этого метода позволяет получить всегда верное заключение.

Пример 5.5.4. Получим на основе индуктивных рассуждений формулу общего члена арифметической прогрессии. Напомним, что арифметической профессией называется числовая последовательность, каждый член которой отличается от предыдущего на одно и то же число, называемое разностью прогрессии. Для того чтобы однозначно задать арифметическую профессию, нужно указать ее первый член а и разность d.

Итак, по определению а п+ = а п + d, при п> 1.

В школьном курсе математики, как правило, формула общего члена арифметической профессии устанавливается на основе частных примеров, то есть именно по индукции.

Если /7=1, ТО С 7| = Я|, ТО есть Я| = tf|+df(l -1).

Если /7=2, то я 2 = a+d, то есть а = Я|+*/(2-1).

Если /7=3, то я 3 = я 2 + = (a+d)+d = a+2d, то есть я 3 = Я|+(3-1).

Если /7=4, то я 4 = я 3 +*/ = (a+2d)+d = Я1+3 и т.д.

Приведенные частные примеры позволяют выдвинуть гипотезу: формула общего члена имеет вид а„ = a+(n-)d для всех /7>1.

Докажем эту формулу методом математической индукции.

База индукции проверена в предыдущих рассуждениях.

Пусть к - такой номер, при котором я* - a+{k-)d (индуктивное предположение ).

Докажем , что я*+! = a+((k+)-)d, то есть я*+1 = a x +kd.

По определению я*+1 = аь+d. а к = я | +(к -1 )d , значит, ац+ = я i +(А:-1)^/+с/ = я | +(А-1+1 )d = я i +kd , что и требовалось доказать (для обоснования индуктивного перехода).

Теперь формула я„ = a+{n-)d доказана для любого натурального номера /;.

Пусть дана некоторая последовательность я ь я 2 , я,„ ... (не

обязательно арифметическая или геометрическая прогрессия). Часто возникают задачи, где требуется суммировать первые п членов этой последовательности, то есть задать сумму Я|+я 2 +...+я и формулой, которая позволяет находить значения этой суммы, не вычисляя члены последовательности.

Пример 5.5.5. Докажем, что сумма первых п натуральных чисел равна

/?(/7 + 1)

Обозначим сумму 1+2+...+/7 через S n . Найдем значения S n для некоторых /7.

Заметим: для того чтобы найти сумму S 4 , можно воспользоваться вычисленным ранее значением 5 3 , так как 5 4 = 5 3 +4.

п(п +1)

Если подставить рассмотренные значения /? в терм ---то

получим, соответственно, те же суммы 1, 3, 6, 10. Эти наблюдения

. _ п(п + 1)

наталкивают на мысль, что формулу S „=--- можно использовать при

любом //. Докажем эту гипотезу методом математической индукции.

База индукции проверена. Выполним индуктивный переход.

Предположим , что формула верна для некоторого натурального числа

, к(к + 1)

к, то сеть сумма первых к натуральных чисел равна ----.

Докажем , что сумма первых (?+1) натуральных чисел равна

  • (* + !)(* + 2)

Выразим?*+1 через S k . Для этого в сумме S*+i сгруппируем первые к слагаемых, а последнее слагаемое запишем отдельно:

По индуктивному предположению S k = Значит, чтобы найти

сумму первых (?+1) натуральных чисел, достаточно к уже вычисленной

. „ к(к + 1) _ .. ..

сумме первых к чисел, равной ---, прибавить одно слагаемое (к+1).

Индуктивный переход обоснован. Тем самым выдвинутая вначале гипотеза доказана.

Мы привели доказательство формулы S n = п ^ п+ методом

математической индукции. Конечно, есть и другие доказательства. Например, можно записать сумму S, в порядке возрастания слагаемых, а затем в порядке убывания слагаемых:

Сумма слагаемых, стоящих в одном столбце, постоянна (в одной сумме каждое следующее слагаемое уменьшается на 1, а в другой увеличивается на 1) и равна (/г+1). Поэтому, сложив полученные суммы, будем иметь п слагаемых, равных (и+1). Итак, удвоенная сумма S„ равна п(п+ 1).

Доказанная формула может быть получена как частный случай формулы суммы первых п членов арифметической прогрессии.

Вернемся к методу математической индукции. Отметим, что первый этап метода математической индукции (база индукции) всегда необходим. Отсутствие этого этапа может привести к неверному выводу.

Пример 5.5.6. «Докажем» предложение: «Число 7"+1 делится на 3 при любом натуральном я».

«Предположим, что при некотором натуральном значении к число 7*+1 делится на 3. Докажем, что число 7 ж +1 делится на 3. Выполним преобразования:

Число 6 очевидно делится на 3. Число 1 к + делится на 3 по индуктивному предположению, значит, число 7-(7* + 1) также делится на 3. Поэтому разность чисел, делящихся на 3, будет также делиться на 3.

Предложение доказано».

Доказательство исходного предложения неверно, несмотря на то что индуктивный переход выполнен правильно. Действительно, при п= I имеем число 8, при п=2 - число 50, ..., и ни одно из этих чисел нс делится на 3.

Сделаем важное замечание об обозначении натурального числа при выполнении индуктивного перехода. При формулировке предложения А(п) буквой п мы обозначали переменную, вместо которой можно подставлять любые натуральные числа. При формулировке индуктивного предположения мы обозначали значение переменной буквой к. Однако очень часто вместо новой буквы к используют ту же самую букву, которой обозначается переменная. Это никак не влияет на структуру рассуждений при выполнении индуктивного перехода.

Рассмотрим еще несколько примеров задач, для решения которых можно применить метод математической индукции.

Пример 5.5.7. Найдем значение суммы

В задании переменная п не фигурирует. Однако рассмотрим последовательность слагаемых:

Обозначим S, = а+а 2 +...+а„. Найдем S „ при некоторых п. Если /1= 1, то S, =а, = -.

Если п= 2. то S, = а, + а? = - + - = - = -.

Если /?=3, то S-, = a,+a 7 + я, = - + - + - = - + - = - = -.

3 1 - 3 2 6 12 3 12 12 4

Можете самостоятельно вычислить значения S„ при /7 = 4; 5. Возникает

естественное предположение: S n = -- при любом натуральном /7. Докажем

это методом математической индукции.

База индукции проверена выше.

Выполним индуктивный переход , обозначая произвольно взятое

значение переменной п этой же буквой, то есть докажем, что из равенства

0 /7 _ /7 +1

S n =-следует равенство S , =-.

/7+1 /7 + 2

Предположим, что верно равенство S = - П -.

Выделим в сумме S„+ первые п слагаемых:

Применив индуктивное предположение, получим:

Сокращая дробь на (/7+1), будем иметь равенство S n +1 - , Л

Индуктивный переход обоснован.

Тем самым доказано, что сумма первых п слагаемых

  • 1 1 1 /7 ^
  • - +-+...+- равна -. Теперь возвратимся к первоначальной
  • 1-2 2-3 /?(// +1) /7 + 1

задаче. Для ее решения достаточно взять в качестве значения п число 99.

Тогда сумма -!- + -!- + -!- + ...+ --- будет равна числу 0,99.

1-2 2-3 3-4 99100

Постарайтесь вычислить данную сумму другим способом.

Пример 5.5.8. Докажем, что производная суммы любого конечного числа дифференцируемых функций равна сумме производных этих функций.

Пусть переменная /? обозначает количество данных функций. В случае, когда дана только одна функция, под суммой понимается именно эта функция. Поэтому если /7=1, то утверждение очевидно истинно:/" = /".

Предположим , что утверждение справедливо для набора из п функций (здесь снова вместо буквы к взята буква п), то есть производная суммы п функций равна сумме производных.

Докажем , что производная суммы (я+1) функций равна сумме производных. Возьмем произвольный набор, состоящий из п+ дифференцируемой функции: /1,/2, . Представим сумму этих функций

в виде g+f„+ 1, где g=f +/г + ... +/ t - сумма п функций. По индуктивному предположению производная функции g равна сумме производных: g" = ft +ft + ... +ft. Поэтому имеет место следующая цепочка равенств:

Индуктивный переход выполнен.

Таким образом, исходное предложение доказано для любого конечного числа функций.

В ряде случаев требуется доказать истинность предложения А(п) для всех натуральных я, начиная с некоторого значения с. Доказательство методом математической индукции в таких случаях проводится по следующей схеме.

База индукции. Доказываем, что предложение А верно для значения п, равного с.

Индуктивный переход. 1) Предполагаем, что предложение А верно для некоторого значения к переменной /?, которое больше либо равно с.

2) Доказываем, что предложение А истинно для значения /?, равного

Снова заметим, что вместо буквы к часто оставляют обозначение переменной п. В этом случае индуктивный переход начинают словами: «Предположим, что для некоторого значения п>с верно А(п). Докажем, что тогда верно А(п+ 1)».

Пример 5.5.9. Докажем, что при всех натуральных п> 5 верно неравенство 2” > и 2 .

База индукции. Пусть п= 5. Тогда 2 5 =32, 5 2 =25. Неравенство 32>25 истинно.

Индуктивный переход. Предположим , что имеет место неравенство 2 П >п 2 для некоторого натурального числа п> 5. Докажем , что тогда 2" +| > (п+1) 2 .

По свойствам степеней 2” +| = 2-2". Так как 2">я 2 (по индуктивному предположению), то 2-2" > 2я 2 (I).

Обоснуем, что 2п 2 больше (я+1) 2 . Это можно сделать разными способами. Достаточно решить квадратное неравенство 2х 2 >(х+) 2 во множестве действительных чисел и увидеть, что все натуральные числа, большие либо равные 5, являются его решениями.

Мы поступим следующим образом. Найдем разность чисел 2п 2 и (я+1) 2:

Так как и > 5, то я+1 > 6, значит, (я+1) 2 > 36. Поэтому разность больше 0. Итак, 2я 2 > (я+1) 2 (2).

По свойствам неравенств из (I) и (2) следует, что 2*2" > (я+1) 2 , что и требовалось доказать для обоснования индуктивного перехода.

На основе метода математической индукции заключаем, что неравенство 2" > я 2 истинно для любых натуральных чисел я.

Рассмотрим еще одну форму метода математической индукции. Отличие заключается в индуктивном переходе. Для его осуществления требуется выполнить два шага:

  • 1) предположить, что предложение А(п) верно при всех значениях переменной я, меньших некоторого числар;
  • 2) из выдвинутого предположения вывести, что предложение А(п) справедливо и для числар.

Таким образом, индуктивный переход требует доказательства следствия: [(Уи?) А{п)] => А(р). Заметим, что следствие можно переписать в виде: [(Уп^р) А(п)] => А(р+ 1).

В первоначальной формулировке метода математической индукции при доказательстве предложения А(р) мы опирались только на «предыдущее» предложение А(р- 1). Данная здесь формулировка метода позволяет выводить А(р), считая, что все предложения А(п), где я меньшер , истинны.

Пример 5.5.10. Докажем теорему: «Сумма внутренних углов любого я-угольника равна 180°(я-2)».

Для выпуклого многоугольника теорему легко доказать, если разбить его диагоналями, проведенными из одной вершины, на треугольники. Однако для невыпуклого многоугольника такая процедура может быть невозможна.

Докажем теорему для произвольного многоугольника методом математической индукции. Будем считать известным следующее утверждение, которое, строго говоря, требует отдельного доказательства: «В любом //-угольнике существует диагональ, лежащая целиком во внугренней его части».

Вместо переменной // можно подставлять любые натуральные числа, которые больше либо равны 3. Для п=Ъ теорема справедлива, так как в треугольнике сумма углов равна 180°.

Возьмем некоторый /7-угольник (р> 4) и предположим, что сумма углов любого //-угольника, где // р, равна 180°(//-2). Докажем, что сумма углов //-угольника равна 180°(//-2).

Проведем диагональ //-угольника, лежащую внутри него. Она разобьет //-угольник на два многоугольника. Пусть один из них имеет к сторон, другой - к 2 сторон. Тогда к+к 2 -2 = р, так как полученные многоугольники имеют общей стороной проведенную диагональ, не являющуюся стороной исходного //-угольника.

Оба числа к и к 2 меньше //. Применим к полученным многоугольникам индуктивное предположение: сумма углов А]-угольника равна 180°-(?i-2), а сумма углов? 2 -угольника равна 180°-(Аг 2 -2). Тогда сумма углов //-угольника будет равна сумме этих чисел:

180°*(Аг|-2)-н 180°(Аг2-2) = 180 о (Аг,-ьАг 2 -2-2) = 180°-(//-2).

Индуктивный переход обоснован. На основе метода математической индукции теорема доказана для любого //-угольника (//>3).

Метод математической индукции

Вступление

Основная часть

  1. Полная и неполная индукция
  2. Принцип математической индукции
  3. Метод математической индукции
  4. Решение примеров
  5. Равенства
  6. Деление чисел
  7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n) истинно при n=p и если А(k)ÞА(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4.

3) Докажем истинность этого ут-верждения для n=k+1, т.е.

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4.

Из приведённого доказательства видно, что ут-верждение верно при n=k+1, следовательно, равен-ство верно при любом натуральном n.

Доказать, что

((2 3 +1)/(2 3 -1))´((3 3 +1)/(3 3 -1))´…´((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2.

Решение: 1) При n=2 тождество выглядит: (2 3 +1)/(2 3 -1)=(3´2´3)/2(2 2 +2+1),

т.е. оно верно.

2) Предположим, что выражение верно при n=k

(2 3 +1)/(2 3 -1)´…´(k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1).

3) Докажем верность выражения при n=k+1.

(((2 3 +1)/(2 3 -1))´…´((k 3 +1)/(k 3 -1)))´(((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1))´((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2´

´((k+1) 2 +(k+1)+1).

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого n>2

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3)

для любого натурального n.

Решение: 1) Пусть n=1, тогда

1 3 -2 3 =-1 3 (4+3); -7=-7.

2) Предположим, что n=k, тогда

1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3).

3) Докажем истинность этого ут-верждения при n=k+1

(1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3).

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для лю-бого натурального n.

Доказать верность тождества

(1 2 /1´3)+(2 2 /3´5)+…+(n 2 /(2n-1)´(2n+1))=n(n+1)/2(2n+1)

для любого натурального n.

1) При n=1 тождество верно 1 2 /1´3=1(1+1)/2(2+1).

2) Предположим, что при n=k

(1 2 /1´3)+…+(k 2 /(2k-1)´(2k+1))=k(k+1)/2(2k+1).

3) Докажем, что тождество верно при n=k+1.

(1 2 /1´3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1))´((k/2)+((k+1)/(2k+3)))=(k+1)(k+2)´ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1).

Из приведённого доказательства видно, что ут-верждение верно при любом натуральном n.

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка.

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23´133.

Но (23´133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка.

3) Докажем, что в таком случае

(11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле 11 k+3 +12 2л+3 =11´11 k+2 +12 2´ 12 2k+1 =11´11 k+2 +

+(11+133)´12 2k+1 =11(11 k+2 +12 2k+1)+133´12 2k+1 .

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без ос-татка по предположению, а во втором одним из множителей выступает 133. Итак, А(k)ÞА(k+1). В силу метода математической индукции утвержде-ние доказано.

Доказать, что при любом n 7 n -1 делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

7 k -1 делится на 6 без остатка.

3) Докажем, что утверждение справедливо для n=k+1.

X k+1 =7 k+1 -1=7´7 k -7+6=7(7 k -1)+6.

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слага-емым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической ин-дукции утверждение доказано.

Доказать, что 3 3n-1 +2 4n-3 при произвольном на-туральном n делится на 11.
Решение: 1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остат-ка. Значит, при n=1 утверждение верно.

2) Предположим, что при n=k

X k =3 3k-1 +2 4k-3 делится на 11 без остатка.

3) Докажем, что утверждение верно для n=k+1.

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3´ 3 3k-1 +2 4´ 2 4k-3 =

27´3 3k-1 +16´2 4k-3 =(16+11)´3 3k-1 +16´2 4k-3 =16´3 3k-1 +

11´3 3k-1 +16´2 4k-3 =16(3 3k-1 +2 4k-3)+11´3 3k-1 .

Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположе-нию, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма де-лится на 11 без остатка при любом натуральном n. В силу метода математической индукции утвер-ждение доказано.

Доказать, что 11 2n -1 при произвольном нату-ральном n делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

11 2k -1 делится на 6 без остатка.

11 2(k+1) -1=121´11 2k -1=120´11 2k +(11 2k -1).

Оба слагаемых делятся на 6 без остатка: пер-вое содержит кратное 6-ти число 120, а второе де-лится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

Доказать, что 3 3n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка.

Решение: Предварительно докажем, что 3 3n+3 -1 делится на 26 без остатка.

  1. При n=0
  2. 3 3 -1=26 делится на 26

  3. Предположим, что при n=k
  4. 3 3k+3 -1 делится на 26

  5. Докажем, что утверждение

верно при n=k+1.

3 3k+6 -1=27´3 3k+3 -1=26´3 3л+3 +(3 3k+3 -1) –делится на 26

Теперь проведём доказательство утвер-ждения, сформулированного в условии задачи.

1) Очевидно, что при n=1 утвер-ждение верно

3 3+3 -26-27=676

2) Предположим, что при n=k

выражение 3 3k+3 -26k-27 делится на 26 2 без остатка.

3) Докажем, что утверждение верно при n=k+1

3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27).

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода мате-матической индукции утверждение доказано.

Доказать, что если n>2 и х>0, то справедливо неравенство

(1+х) n >1+n´х.

Решение: 1) При n=2 неравенство справед-ливо, так как

(1+х) 2 =1+2х+х 2 >1+2х.

Значит, А(2) истинно.

2) Докажем, что А(k)ÞA(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство

(1+х) k >1+k´x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1)´x.

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k´x)(1+x).

Рассмотрим правую часть последнего неравен-

ства; имеем

(1+k´x)(1+x)=1+(k+1)´x+k´x 2 >1+(k+1)´x.

В итоге получаем, что

(1+х) k+1 >1+(k+1)´x.

Итак, А(k)ÞA(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого

Доказать, что справедливо неравенство

(1+a+a 2) m > 1+m´a+(m(m+1)/2)´a 2 при а> 0.

Решение: 1) При m=1

(1+а+а 2) 1 > 1+а+(2/2)´а 2 обе части равны.

2) Предположим, что при m=k

(1+a+a 2) k >1+k´a+(k(k+1)/2)´a 2

3) Докажем, что при m=k+1 не-равенство верно

(1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k´a+

+(k(k+1)/2)´a 2)=1+(k+1)´a+((k(k+1)/2)+k+1)´a 2 +

+((k(k+1)/2)+k)´a 3 +(k(k+1)/2)´a 4 > 1+(k+1)´a+

+((k+1)(k+2)/2)´a 2 .

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математиче-ской индукции, неравенство справедливо для лю-бого натурального m.

Доказать, что при n>6 справедливо неравенство

3 n >n´2 n+1 .

Решение: Перепишем неравенство в виде

  1. При n=7 имеем
  2. 3 7 /2 7 =2187/128>14=2´7

    неравенство верно.

  3. Предположим, что при n=k

3) Докажем верность неравен-ства при n=k+1.

3 k+1 /2 k+1 =(3 k /2 k)´(3/2)>2k´(3/2)=3k>2(k+1).

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравен-ство справедливо для любого натурального n.

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)<1,7-(1/n).

Решение: 1) При n=3 неравенство верно

1+(1/2 2)+(1/3 2)=245/180<246/180=1,7-(1/3).

  1. Предположим, что при n=k

1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k).

3) Докажем справедливость не-

равенства при n=k+1

(1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)<1,7-(1/k)+(1/(k+1) 2).

Докажем, что 1,7-(1/k)+(1/(k+1) 2)<1,7-(1/k+1)Û

Û(1/(k+1) 2)+(1/k+1)<1/kÛ(k+2)/(k+1) 2 <1/kÛ

Ûk(k+2)<(k+1) 2Û k 2 +2k

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)<1,7-(1/k+1).

В силу метода математической индукции не-равенство доказано.

Заключение

Вчастности изучив метод математической индукции, я повысил свои знания в этой облас-ти математики, а также научился решать задачи, которые раньше были мне не под силу.

В основном это были логические и занима-тельные задачи, т.е. как раз те, которые повы-шают интерес к самой математике как к науке. Решение таких задач становится заниматель-ным занятием и может привлечь в математиче-ские лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

МАТЕМАТИКА:

ЛЕКЦИИ, ЗАДАЧИ, РЕШЕНИЯ

Учебное пособие / В.Г.Болтянский, Ю.В.Сидоров, М.И.Шабунин. ООО “Попурри” 1996.

АЛГЕБРА И НАЧАЛА АНАЛИЗА

Учебное пособие / И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. “Просвещение” 1975.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Математическая индукция— один из методов доказательства. Используется, чтобы доказать истинность некоего утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1.

Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход) . Тогда, если мы толкнём первую косточку (это база индукции) , то все косточки в ряду упадут.

Я выбрал данную тему для исследования, потому что в школьной программе методу математической индукции уделяют мало времени, ученик узнает поверхностную информацию, которая поможет ему получить лишь общее представление о данном методе, но чтобы углубленно изучить эту тему потребуется саморазвитие. Действительно будет полезно подробнее узнать о данной теме, так как это расширяет кругозор ученика и помогает в решении сложных задач в жизни.

Цели работы:

    Познакомиться с методом математической индукции;

    систематизировать знания по данной теме и применить её при решении математических задач и доказательстве теорем;

    обосновать и наглядно показать практическое значение метода математической индукции как необходимого фактора для решения задач.

Задачи работы:

    Проанализировать литературу и обобщить знания по данной теме;

    разобраться в принципе метода математической индукции;

    исследовать применение метода математической индукции к решению задач ив жизни;

    сформулировать выводы и обобщить изученный материал по проделанной работе.

Основная часть

История возникновения индукции

Правила логических рассуждений были сформулированы два с половиной тысячелетия назад древнегреческим учёным Аристотелем. Он создал полный список простейших правильных рассуждений, силлогизмов - «кирпичиков» логики, одновременно указав типичные рассуждения, очень похожие на правильные, однако неправильные.

Осознание метода математической индукции как отдельного важного метода восходит к Блезу Паскалю и Герсониду, хотя отдельные случаи применения встречаются ещё в античные времена у Прокла и Эвклида. Современное название метода было введено де Морганом в 1838 году.

Только к концу XIX века сложился стандарт требований к логической строгости, остающейся и до настоящего времени господствующими в практической работе математиков над развитием отдельных математических теорий.

Индукция (induction - по-латыни наведение ).

Индукция наглядно иллюстрируется известной легендой о том, как Исаак Ньютон сформулировал закон всемирного тяготения после того, как ему на голову упало яблоко.Ещё пример из физики: в таком явлении, как электромагнитная индукция, электрическое поле создает, «наводит» магнитное поле. «Ньютоново яблоко» - типичный пример ситуации, когда один или несколько частных случаев, то есть наблюдения , «наводят» на общее утверждение, общий вывод делается на основании частных случаев. Индуктивный метод является основным для получения общих закономерностей и в естественных, и в гуманитарных науках. Но он имеет весьма существенный недостаток: на основании частных примеров может быть сделан неверный вывод. Гипотезы, возникающие при частных наблюдениях, не всегда являются правильными.

Полная и неполная индукция

Индуктивное умозаключение - такая форма абстрактного мышления, в которой мысль развивается от знания меньшей степени общности к знанию большей степени общности, а заключение, вытекающее из посылок, носит преимущественно вероятностный характер.

Учитывая зависимость отхарактера исследования различают полную и неполную индукцию.

Полная индукция - это умозаключение, в ко-тором общее заключение делается на базе изу-чения всех предметов или явлений данного клас-са. В этом случае рассуждение имеет следующую схему:

К примеру, установление того, что каждый из документов, необходимых для оценки готовности уголовного дела для передачи в суд, имеется, позво-ляет с полным основанием делать вывод, что дело следует передавать в суд

Полная индукция дает достоверное знание, так как заключение делается только о тех предметах или явлениях, которые перечислены в посылках. Но область применения полной индукции весьма ограничена.

Полную индукцию можно применить, когда появляется возможность иметь дело с замкнутым классом предметов, число элементов в котором яв-ляется конечным и легко обозримым. Она предполагает наличие следующих условий:

а) точное знание числа предметов или явлений, подлежащих изу-чению;

б) убеждение, что признак принадлежит каждому элементу класса;

в) небольшое число элементов изучаемого класса;

г) целесообразность и рациональность.

Вот почему полная индукция чаще всего используется при расследова-нии уголовных дел, связанных с недостачей материальных ценностей. Здесь вывод осуществляется на базе подсчета всех без исключения содержащих-ся на складе или в хранилище предметов путем инвентаризации.

При этом в большинстве случаев юристу приходится иметь дело с такими однородными фактами, количество которых не ограничено или которые не все доступны в настоящее время для непосредственного изучения. Вот поче-му в таких случаях прибегают к использованию неполной индукции, кото-рая на практике применяется значительно шире, чем полная.

Неполная индукция - это умозаключение, в котором на базе повторя-емости признака у некоторых явлений определенного класса делается вывод о принадлежности этого признака всему классу явлений. Неполная индук-ция имеет следующую схему рассуждения:

Неполная индукция часто применяется в реальной жизни, так как позво-ляет делать заключения на базе анализа определенной части данного класса предметов, экономит время и силы человека. Правда, в данном случае мы получим вероятностное заключение, ĸᴏᴛᴏᴩᴏᴇ исходя из вида не-полной индукции будет колебаться от менее вероятностного к более вероят-ностному.

По способам обоснования заключения различают следующие виды не-полной индукции:

НЕПОЛНАЯ ИНДУКЦИЯ

популярная

Метод математической индукции

Метод математической индукции можно сравнить с прогрессом: мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению логически развивать свою мысль, а значит, сама природа предначертала ему размышлять индуктивно.

Алгоритм:

    база - показываем, что доказываемое утверждение верно для некоторых простейших частных случаев n=1 ;

    предположение - предполагаем, что утверждение доказано для первых k случаев;

    шаг - в этом предположении доказываем утверждение для случая n=k+1;

    вывод - утверждение верно для всех случаев, то есть для всех n.

Заметим, что Методом математической индукции можно решать не все задачи, а только задачи, параметризованные некоторой переменной. Эта переменная называется переменной индукции .

Задачи

Как видно из прошлого материала, индукция бывает не только в математике. Иногда называют «неполной индукцией» переход от частных примеров к общим закономерностям. Бывает индукция и в физике (катушки индуктивности, явление самоиндукции). Но в этой работе мы говорим только о математической (полной) индукции.

Что это такое, проще всего объяснить на примерах. Разберём несколько задач.

Задача 1 . Несколько прямых делят плоскость на части. Доказать, что можно раскрасить эти части в белый и чёрный цвет так, чтобы соседние части (имеющие общий отрезок границы) были разного цвета (как на рисунке).

Решение. Заметим прежде всего, что не любую «карту» (части | страны, разделённые линиями границ) можно так раскрасить. Например, если в одной точке сходятся три страны и верхняя страна, скажем, белая, то две оставшиеся страны должны быть чёрными, хотя граничат между собой.

Но для плоскости, разрезанной на части прямыми, такого случиться не может, и мы сейчас это докажем. Пусть прямая только одна. Тогда всё просто: одна полуплоскость белая, другая | чёрная (левый рисунок). Если прямых две, получатся четыре части (средний рисунок).

Посмотрим, что произойдёт, если мы на рисунке с двумя прямыми и четырьмя частями проведём третью прямую. Она поделит три страны из четырёх; при этом появятся новые участки границы, по обе стороны которых цвет один и тот же (правый рисунок).

Как же быть? С одной стороны от новой прямой поменяем цвета (белый сделаем чёрным и наоборот). Тогда новая прямая будет всюду разделять участки разного цвета. Другими словами, с одной стороны от прямой мы берём позитив карты, а с другой негатив.

(Придирчивый читатель спросит: а почему старые границы раскрашены правильно? Это легко понять: в позитивной части цвета не изменились,

а в негативной оба цвета заменились на противоположные.)

Теперь ясно, что тем же способом можно добавить ещё одну прямую (перекрасив карту с одной стороны от неё), затем ещё одну и так далее | пока мы не получим нужную нам карту. Задача решена.

Задача 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 3, так как минимальное число углов в треугольнике равно 3.

1) При п = 3 наше утверждение принимает вид: S 3 = π. Но сумма внутренних углов любого треугольника действительно равна π. Поэтому при п = 3 формула (1) верна.

2) Пусть эта формула верна при n=k , то есть S k = (k - 2)π, где k > 3. Докажем, что в таком случае имеет место и формула:S k+ 1 = (k - 1)π.

Пусть A 1 A 2 ... A k A k+ 1 —произвольный выпуклый (k + 1) -угольник (рис. 338).

Соединив точки A 1 и A k , мы получим выпуклый k -угольник A 1 A 2 ... A k — 1 A k . Очевидно, что сумма углов (k + 1) -угольника A 1 A 2 ... A k A k+ 1 равна сумме углов k -угольника A 1 A 2 ... A k плюс сумма углов треугольника A 1 A k A k+ 1 . Но сумма углов k -угольника A 1 A 2 ... A k по предположению равна (k - 2)π, а сумма углов треугольника A 1 A k A k+ 1 равна π. Поэтому

S k+ 1 = S k + π = (k - 2)π + π = (k - 1)π.

Итак, оба условия принципа математической индукции выполняются, и потому формула (1) верна при любом натуральном п > 3.

Задача 4 .На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Восстановим затем отброшенную окружность и по одну сторону от нее (например, внутри) изменим цвет каждой области на противоположный (т.е. черный - на белый и наоборот); легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками.

Задача 5 .Для того чтобы карту можно было правильно раскрасить двумя красками, необходимо и достаточно, чтобы в каждой ее вершине сходилось четное число границ.

Необходимость этого условия очевидно, так как если в какой-нибудь вершине карты сходится нечетное число границ, то уже страны, окружающие эту вершину, нельзя правильно раскрасить двумя красками.

Для доказательства достаточности условия проведем индукцию по числу границ карты.

Для карты с двумя границами утверждение очевидно.

Предположим, что утверждение справедливо для любой карты, в каждой вершине которой сходится четное число границ и общее число границ которой не превосходит n, и пусть дана карта S, имеющая n+1 границ и удовлетворяющая тому же условию. Начиная с произвольной вершины А карты S, станем двигаться в произвольном направлении вдоль границ карты. Ввиду конечности числа вершин карты мы вернемся в конце концов в одну из уже проведенных вершин (карта не имеет крайних вершин, потому что на ней нет неразделяющих границ) и сможем выделить некоторый не имеющий самопересечений замкнутый контур, состоящий из границ карты. Удалив этот контур, мы получим контур S 1 с меньшим числом границ, в каждой вершине которой также сходится четное число границ (потому что в каждой вершине карты S отбрасывается четное число границ - 0 или 2). В силу индуктивного предположения карту S 1 можно правильно раскрасить двумя красками.

Восстановив отброшенный контур и изменив все цвета с одной стороны от него (например, внутри), мы и получим правильную раскраску карты S.

Задача 6 из жизни .Имеется лестница, все ступени которой одинаковы. Требуется указать минимальное число положений, которые гарантировали бы возможность «забраться» на любую по номеру ступеньку.

Все согласны с тем, что должно быть условие. Мы должны уметь забраться на первую ступень. Далее должны уметь с 1-ой ступеньки забраться на вторую. Потом во второй - на третью и т.д. на n-ую ступеньку. Конечно, в совокупности же «n» утверждений гарантирует нм то, что мы сможем добраться до n-ой ступеньки.

Посмотрим теперь на 2, 3,…., n положение и сравним их друг с другом. Легко заметить, что все они имеют одну и ту же структуру: если мы добрались до k ступеньки, то можем забраться на (k+1) ступеньку. Отсюда становится естественной такая аксиома для справедливости утверждений, зависящих от «n»: если предложение А(n), в котором n - натуральное число, выполняется при n=1 и из того, что оно выполняется при n=k (где k - любое натуральное число), следует, что оно выполняется и для n=k+1, то предположение А(n) выполняется для любого натурального числа n.

Заключение

Итак, индукция (от лат. inductio — наведение, побуждение) — одна из форм умозаключения, приём исследования, применяя который от знания отдельных фактов приходят к общим положениям. Индукция бывает полная и неполная. Метод неполной индукции состоит в переходе к универсальной формулировке после проверки истинности частных формулировок для отдельных, но не всех значений n. Применяя полную индукцию, мы лишь тогда считаем себя вправе объявить об истинности универсальной формулировки, когда убедились в её истинности для каждого без исключения значения n. Метод математической индукции - метод доказательства, основанный на принципе математической индукции. Он позволяет в поисках общего закона испытывать гипотезы, отбрасывать ложные и утверждать истинные.

Метод математической индукции является одной из теоретических основ при решении задач на суммирование, доказательстве тождеств, доказательстве и решении неравенств, решении вопроса делимости, при изучении свойств числовых последовательностей, при решении геометрических задач и т. д.

Знакомясь с методом математической индукции, я изучал специальную литературу, консультировалась с педагогом, анализировал данные и решения задач, пользовался ресурсами Интернета, выполнял необходимые вычисления.

Вывод: в ходе работы я узнал, чтобы решать задачи методом математической индукции нужно знать и понимать основной принцип математической индукции.

Достоинством метода математической индукции является его универсальность, так как с помощью этого метода можно решить многие задачи. Недостатком неполной индукции является то, что порой она приводит к ошибочным выводам.

Обобщив и систематизировав знания по математической индукции, я убедился в необходимости знаний по теме «метод математической индукции». Кроме того эти знания повышают интерес к математике, как к науке. Так же в ходе работы приобрел навыки решения задач по использованию метода математической индукции. Считаю, что эти навыки помогут мне в будущем.

Список использованной литературы:

    www.mccme.ru - задачи;

    www.studfiles.ru - задачи;

    dic.academic.ru - энциклопедия.

    А. Шень. Математическая индукция. — МЦНМО, 2004. — 36 с.

    Википедия- свободная энциклопедия.

    Л. И. Головина, И. М. Яглом. Индукция в геометрии. — Физматгиз, 1961. — Т. 21. — 100 с. — (Популярные лекции по математике).

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

Например, мы каждый день наблюдаем, что Солнце восходит с востока. Поэтому можно быть уверенным, что и завтра оно появится на востоке, а не на западе. Этот вывод мы делаем, не прибегая ни к каким предположениям о причине движения Солнца по небу (более того, само это движение оказывается кажущимся, поскольку на самом деле движется земной шар). И, тем не менее, этот индуктивный вывод правильно описывает те наблюдения, которые мы проведем завтра.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие следовать за тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.


    Суть метода математической индукции

Во многих разделах арифметики, алгебры, геометрии, анализа приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.

Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:

    Предложение А(n) истинно для n=1.

    Из предположения, что А(n) истинно для n=k (где k - любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.

Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.

Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.

Метод математической индукции широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических и многих других задач.


    Метод математической индукции в решении задач на

делимость

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 1 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 2. Доказать истинность предложения

A(n)={число 5 кратно 19}, n - натуральное число.

Решение.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.


    Применение метода математической индукции к

суммированию рядов

Пример 1. Доказать формулу

, n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим


Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .

Решение.

Обозначим искомую сумму , т.е. .

При n=1 гипотеза верна.

Пусть . Покажем, что .

В самом деле,

Задача решена.

Пример 3. Доказать, что сумма квадратов n первых чисел натурального ряда равна .

Решение.

Пусть .

.

Предположим, что . Тогда

И окончательно .

Пример 4. Доказать, что .

Решение.

Если , то

Пример 5. Доказать, что

Решение.

При n=1 гипотеза очевидно верна.

Пусть .

Докажем, что .

Действительно,

    Примеры применения метода математической индукции к

доказательству неравенств

Пример 1. Доказать, что при любом натуральном n>1

.

Решение.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

. (1)

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 3. Доказать, что , где >-1, , n - натуральное число, большее 1.

Решение.

При n=2 неравенство справедливо, так как .

Пусть неравенство справедливо при n=k, где k - некоторое натуральное число, т.е.

. (1)

Покажем, что тогда неравенство справедливо и при n=k+1, т.е.

. (2)

Действительно, по условию, , поэтому справедливо неравенство

, (3)

полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так: . Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).

Пример 4. Доказать, что

(1)

где , , n - натуральное число, большее 1.

Решение.

При n=2 неравенство (1) принимает вид


. (2)

Так как , то справедливо неравенство

. (3)

Прибавив к каждой части неравенства (3) по , получим неравенство (2).

Этим доказано, что при n=2 неравенство (1) справедливо.

Пусть неравенство (1) справедливо при n=k, где k - некоторое натуральное число, т.е.

. (4)

Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.

(5)

Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:

. (6)

Для того чтобы доказать справедливость неравенства (5), достаточно показать, что

, (7)

или, что то же самое,

. (8)

Неравенство (8) равносильно неравенству

. (9)

Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.

Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.

    Метод математической индукции в применение к другим

задачам

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.

Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.

Решение.

При n=2 правильный 2 n - угольник есть квадрат; его сторона . Далее, согласно формуле удвоения


находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2 n - угольника при любом равна

. (1)

Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения


,

откуда следует, что формула (1) справедлива при всех n.

Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Решение.

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 1 А 2 …А n на треугольники.

А n

А 1 А 2

Пусть А 1 А k - одна из диагоналей этого разбиения; она делит n-угольник А 1 А 2 …А n на k-угольник A 1 A 2 …A k и (n-k+2)-угольник А 1 А k A k+1 …A n . В силу сделанного предположения, общее число треугольников разбиения будет равно

(k-2)+[(n-k+2)-2]=n-2;

тем самым наше утверждение доказано для всех n.

Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.

Решение.

Для треугольника это число равно, очевидно, единице: P(3)=1.

Предположим, что мы уже определили числа P(k) для всех k 1 А 2 …А n . При всяком разбиении его на треугольники сторона А 1 А 2 будет стороной одного из треугольников разбиения, третья вершина этого треугольника может совпасть с каждой из точек А 3 , А 4 , …,А n . Число способов разбиения n-угольника, при которых эта вершина совпадает с точкой А 3 , равно числу способов разбиения на треугольники (n-1)-угольника А 1 А 3 А 4 …А n , т.е. равно P(n-1). Число способов разбиения, при которых эта вершина совпадает с А 4 , равно числу способов разбиения (n-2)-угольника А 1 А 4 А 5 …А n , т.е. равно P(n-2)=P(n-2)P(3); число способов разбиения, при которых она совпадает с А 5 , равно P(n-3)P(4), так как каждое из разбиений (n-3)-угольника А 1 А 5 …А n можно комбинировать при этом с каждым из разбиений четырехугольника А 2 А 3 А 4 А 5 , и т.д. Таким образом, мы приходим к следующему соотношению:

Р(n)=P(n-1)+P(n-2)P(3)+P(n-3)P(4)+…+P(3)P(n-2)+P(n-1).

С помощью этой формулы последовательно получаем:

P(4)=P(3)+P(3)=2,

P(5)=P(4)+P(3)P(3)+P(4)+5,

P(6)=P(5)+P(4)P(3)+P(3)P(4)+P(5)=14

и т.д.

Так же при помощи метода математической индукции можно решать задачи с графами.

Пусть на плоскости задана сеть линий, соединяющих между собой какие-то точки и не имеющие других точек. Такую сеть линий мы будем называть картой, заданные точки ее вершинами, отрезки кривых между двумя смежными вершинами - границами карты, части плоскости, на которые она разбивается границами - странами карты.

Пусть на плоскости задана некоторая карта. Мы будем говорить, что она правильно раскрашена, если каждая ее страна закрашена определенной краской, причем любые две страны, имеющие между собой общую границу, закрашены в разные цвета.

Пример 4. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Решение.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Истинное знание во все времена основывалось на установлении закономерности и доказательстве её правдивости в определенных обстоятельствах. За столь длительный срок существования логических рассуждений были даны формулировки правил, а Аристотель даже составил список «правильных рассуждений». Исторически принято делить все умозаключения на два типа - от конкретного к множественному (индукция) и наоборот (дедукция). Следует отметить, что типы доказательств от частного к общему и от общего к частному существуют только во взаимосвязи и не могут быть взаимозаменяемы.

Индукция в математике

Термин "индукция" (induction) имеет латинские корни и дословно переводится как «наведение». При пристальном изучении можно выделить структуру слова, а именно латинскую приставку - in- (обозначает направленное действие внутрь или нахождение внутри) и -duction - введение. Стоит отметить, что существует два вида - полная и неполная индукции. Полную форму характеризуют выводы, сделанные на основании изучения всех предметов некоторого класса.

Неполную - выводы, применяемые ко всем предметам класса, но сделанные на основании изучения только некоторых единиц.

Полная математическая индукция - умозаключение, базирующееся на общем выводе обо всем классе каких-либо предметов, функционально связанных отношениями натурального ряда чисел на основании знания этой функциональной связи. При этом процесс доказательства проходит в три этапа:

  • на первом доказывается правильность положения математической индукции. Пример: f = 1, индукции;
  • следующий этап строится на предположении о правомерности положения для всех натуральных чисел. То есть, f=h, это предположение индукции;
  • на третьем этапе доказывается справедливость положения для числа f=h+1, на основании верности положения предыдущего пункта - это индукционный переход, или шаг математической индукции. Примером может служить так называемый если падает первая косточка в ряду (базис), то упадут все косточки в ряду (переход).

И в шутку, и всерьез

Для простоты восприятия примеры решения методом математической индукции обличают в форму задач-шуток. Таковой является задача «Вежливая очередь»:

  • Правила поведения запрещают мужчине занимать очередь перед женщиной (в такой ситуации ее пропускают вперед). Исходя из этого утверждения, если крайний в очереди - мужчина, то и все остальные - мужчины.

Ярким примером метода математической индукции является задача «Безразмерный рейс»:

  • Требуется доказать, что в маршрутку помещается любая численность людей. Правдиво утверждение, что один человек может разместиться внутри транспорта без затруднений (базис). Но как бы ни была заполнена маршрутка, 1 пассажир в нее всегда поместится (шаг индукции).

Знакомые окружности

Примеры решения методом математической индукции задач и уравнений встречаются довольно часто. Как иллюстрацию такого подхода, можно рассмотреть следующую задачу.

Условие : на плоскости размещено h окружностей. Требуется доказать, что при любом расположении фигур образуемая ими карта может быть правильно раскрашена двумя красками.

Решение : при h=1 истинность утверждения очевидна, поэтому доказательство будет строиться для количества окружностей h+1.

Примем допущение, что утверждение достоверно для любой карты, а на плоскости задано h+1 окружностей. Удалив из общего количества одну из окружностей, можно получить правильно раскрашенную двумя красками (черной и белой) карту.

При восстановлении удаленной окружности меняется цвет каждой области на противоположный (в указанном случае внутри окружности). Получается карта, правильно раскрашенная двумя цветами, что и требовалось доказать.

Примеры с натуральными числами

Ниже наглядно показано применение метода математической индукции.

Примеры решения:

Доказать, что при любом h правильным будет равенство:

1 2 +2 2 +3 2 +…+h 2 =h(h+1)(2h+1)/6.

1. Пусть h=1, значит:

R 1 =1 2 =1(1+1)(2+1)/6=1

Из этого следует, что при h=1 утверждение правильно.

2. При допущении, что h=d, получается уравнение:

R 1 =d 2 =d(d+1)(2d+1)/6=1

3. При допущении, что h=d+1, получается:

R d+1 =(d+1) (d+2) (2d+3)/6

R d+1 = 1 2 +2 2 +3 2 +…+d 2 +(d+1) 2 = d(d+1)(2d+1)/6+ (d+1) 2 =(d(d+1)(2d+1)+6(d+1) 2)/6=(d+1)(d(2d+1)+6(k+1))/6=

(d+1)(2d 2 +7d+6)/6=(d+1)(2(d+3/2)(d+2))/6=(d+1)(d+2)(2d+3)/6.

Таким образом, справедливость равенства при h=d+1 доказана, поэтому утверждение верно для любого натурального числа, что и показано в примере решения математической индукцией.

Задача

Условие : требуется доказательство того, что при любом значении h выражение 7 h -1 делимо на 6 без остатка.

Решение :

1. Допустим, h=1, в этом случае:

R 1 =7 1 -1=6 (т.е. делится на 6 без остатка)

Следовательно, при h=1 утверждение является справедливым;

2. Пусть h=d и 7 d -1 делится на 6 без остатка;

3. Доказательством справедливости утверждения для h=d+1 является формула:

R d +1 =7 d +1 -1=7∙7 d -7+6=7(7 d -1)+6

В данном случае первое слагаемое делится на 6 по допущению первого пункта, а второе слагаемое равно 6. Утверждение о том, что 7 h -1 делимо на 6 без остатка при любом натуральном h - справедливо.

Ошибочность суждений

Часто в доказательствах используют неверные рассуждения, в силу неточности используемых логических построений. В основном это происходит при нарушении структуры и логики доказательства. Примером неверного рассуждения может служить такая иллюстрация.

Задача

Условие : требуется доказательство того, что любая куча камней - не является кучкой.

Решение :

1. Допустим, h=1, в этом случае в кучке 1 камень и утверждение верно (базис);

2. Пусть при h=d верно, что куча камней - не является кучкой (предположение);

3. Пусть h=d+1, из чего следует, что при добавлении еще одного камня множество не будет являться кучкой. Напрашивается вывод, что предположение справедливо при всех натуральных h.

Ошибка заключается в том, что нет определения, какое количество камней образует кучку. Такое упущение называется поспешным обобщением в методе математической индукции. Пример это ясно показывает.

Индукция и законы логики

Исторически сложилось так, что всегда "шагают рука об руку". Такие научные дисциплины как логика, философия описывают их в виде противоположностей.

С точки зрения закона логики в индуктивных определениях просматривается опора на факты, а правдивость посылок не определяет правильность получившегося утверждения. Зачастую получаются умозаключения с определенной долей вероятности и правдоподобности, которые, естественно, должны быть проверены и подтверждены дополнительными исследованиями. Примером индукции в логике может быть утверждение:

В Эстонии - засуха, в Латвии - засуха, в Литве - засуха.

Эстония, Латвия и Литва - прибалтийские государства. Во всех прибалтийских государствах засуха.

Из примера можно заключить, что новую информацию или истину нельзя получить при помощи метода индукции. Все, на что можно рассчитывать - это некоторая возможная правдивость выводов. Причем, истинность посылок не гарантирует таких же заключений. Однако данный факт не обозначает, что индукция прозябает на задворках дедукции: огромное множество положений и научных законов обосновываются при помощи метода индукции. Примером может служить та же математика, биология и другие науки. Связано это по большей части с методом полной индукции, но в некоторых случаях применима и частичная.

Почтенный возраст индукции позволил ей проникнуть практически во все сферы деятельности человека - это и наука, и экономика, и житейские умозаключения.

Индукция в научной среде

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий.

В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  1. индукция-отбор (или селекция);
  2. индукция - исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей.

Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений - селекция).

Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Индукция и дедукция с позиции философии

Если взглянуть на историческую ретроспективу, то термин "индукция" впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными.

Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции. Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями.

Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы. Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями.

Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Применение индукции в экономике

Индукция и дедукция давно используются как методы исследования экономики и прогнозирования ее развития.

Спектр использования метода индукции достаточно широк: изучение выполнения прогнозных показателей (прибыли, амортизация и т. д.) и общая оценка состояния предприятия; формирование эффективной политики продвижения предприятия на основе фактов и их взаимосвязей.

Тот же метод индукции применен в «картах Шухарта», где при предположении о разделении процессов на управляемые и неуправляемые утверждается, что рамки управляемого процесса малоподвижны.

Следует отметить, что научные законы обосновываются и подтверждаются при помощи метода индукции, а поскольку экономика является наукой, часто пользующейся математическим анализом, теорией рисков и статистическими данными, то совершенно неудивительно присутствие индукции в списке основных методов.

Примером индукции и дедукции в экономике может служить следующая ситуация. Увеличение цены на продукты питания (из потребительской корзины) и товары первой необходимости подталкивают потребителя к мысли о возникающей дороговизне в государстве (индукция). Вместе с тем, из факта дороговизны при помощи математических методов можно вывести показатели роста цен на отдельные товары или категории товаров (дедукция).

Чаще всего обращается к методу индукции управляющий персонал, руководители, экономисты. Для того чтобы можно было с достаточной правдивостью прогнозировать развитие предприятия, поведение рынка, последствия конкуренции, необходим индукционно-дедуктивный подход к анализу и обработке информации.

Наглядный пример индукции в экономике, относящийся к ошибочным суждениям:

  • прибыль компании сократилась на 30%;
    конкурирующая компания расширила линейку продукции;
    больше ничего не изменилось;
  • производственная политика конкурирующей компании стала причиной сокращения прибыли на 30%;
  • следовательно, требуется внедрить такую же производственную политику.

Пример является красочной иллюстрацией того, как неумелое использование метода индукции способствует разорению предприятия.

Дедукция и индукция в психологии

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции. К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее - ошибочными умозаключениями.

Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать - обманывает, следовательно, все женщины - обманщицы. Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он - дурак;
  • он - умный;
  • я могу все;

И многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта. Один из примеров индукции на приеме у специалиста:

«Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму - насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине - невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры.

Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод.

Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.).

Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета. Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Следует отметить, что отсылка к экспериментам 1960 года (без указания места проведения, фамилий экспериментаторов, выборки испытуемых и самое главное - цели эксперимента) выглядит, мягко говоря, неубедительно, а утверждение о том, что мозг воспринимает информацию, минуя все органы восприятия (фраза «испытывает воздействие» в данном случае вписалась бы более органично), заставляет задуматься над легковерностью и некритичностью автора высказывания.

Вместо заключения

Царица наук - математика, не зря использует все возможные резервы метода индукции и дедукции. Рассмотренные примеры позволяют сделать вывод о том, что поверхностное и неумелое (бездумное, как еще говорят) применение даже самых точных и надежных методов приводит всегда к ошибочным результатам.

В массовом сознании метод дедукции ассоциируется со знаменитым Шерлоком Холмсом, который в своих логических построениях чаще использует примеры индукции, в нужных ситуациях пользуясь дедукцией.

В статье были рассмотрены примеры применения этих методов в различных науках и сферах жизнедеятельности человека.