Скорость ферментативной реакции. Факторы, влияющие на ферментативную активность. Зависимость скорости ферментативной реакции от температуры Скорость ферментативной реакции измеряется в

Данный раздел энзимологии изучает влияние различных факторов на скорость ферментативной реакции. Учитывая общее уравнение ферментативного катализа обратимой реакции превращения одного субстрата в один продукт (1),

следует назвать главные факторы влияния на скорость ферментативной реакции: концентрация субстрата [S], концентрация фермента [E] и концентрация продукта реакции [P].

Взаимодействие некоторых ферментов с их субстратом можно описать гиперболической кривой зависимости скорости ферментативной реакции V от концентрации субстрата [S] (рис.19):

Рис.19.Зависимость скорости ферментативной реакции от концентрации субстрата.

На этой кривой можно выделить три участка, которые можно объяснить по положениям механизма взаимодействия фермента с субстратом: ОА – участок прямо пропорциональной зависимости V от [S], происходит постепенное заполнение активных центров фермента молекулами субстрата с образованием неустойчивого комплекса ES; участок АВ - криволинейная зависимость V от [S], полное насыщение активных центров фермента молекулами субстрата еще не достигнуто. Комплекс ES до достижения переходного состояния является нестабильным, вероятность обратной диссоциации до E и S еще велика; участок ВС - зависимость описывается уравнением нулевого порядка, участок параллелен оси [S], достигнуто полное насыщение активных ферментов молекулами субстрата, V=V max .

Характерная форма кривой описывается математически уравнением Бриггса-Холдейна:

V=V max ● [S]/ Km + [S] (2),

где Кm - константа Михаэлиса-Ментен, численно равная концентрации субстрата, при которой скорость ферментативной реакции равна половине V max .

Чем меньше K m фермента, тем выше сродство фермента к субстрату, тем быстрее достигается переходное состояние для субстрата, и он превращается в продукт реакции. Поиск значений Km для каждого из субстратов фермента с групповой специфичностью важен при определении биологической роли этого фермента в клетке.

Для большинства ферментов невозможно построить гиперболическую кривую (рис.19), В таком случае используется метод двойных обратных величин (Лайнуивера-Бэрка), т.е. строится графическая зависимость 1/[V] от 1/[S] (рис.20). Метод построения таких кривых в эксперименте очень удобен при изучении влияния различных типов ингибиторов на активность ферментов (см. по тексту дальше).

Рис.20. График зависимости 1/[V] от 1/[S] (метод Лайнуивера-Бэрка),

где y-отсекаемый участок - , а x – отсекаемый участок - , тангенс угла α - .

Зависимость скорости ферментативной реакции V от концентрации фермента [E].

Данная графическая зависимость (рис.21) рассматривается при оптимальных температуре и рН окружающей среды, при концентрациях субстрата, значительно превышающих концентрацию насыщения активных центров фермента.

Рис. 21. Влияние концентрации фермента на скорость ферментативной реакции.

Зависимость скорости ферментативной реакции от концентрации кофактора или кофермента. Для сложных ферментов, следует учитывать, что дефицит коферментных форм витаминов при гиповитаминозах, нарушение поступления в организм ионов металлов обязательно приводят к уменьшению концентрации соответствующих ферментов, необходимых для течения процессов обмена веществ. Поэтому следует сделать вывод о прямой зависимости активности фермента от концентрации кофактора или кофермента.

Влияние концентрации продуктов на скорость ферментативной реакции. Для обратимых реакций, протекающих в организме человека, необходимо учитывать, что продукты прямой реакции могут быть использованы ферментом в качестве субстратов обратной реакции. Поэтому направление течения и момент достижения V max являются зависимыми от соотношения концентраций исходных субстратов и продуктов реакции. Так, например, активность аланинаминотрасферазы, катализирующей превращение:

Аланин + Альфа-кетоглутарат ↔ Пируват + Глутамат

зависит в клетке от соотношения концентраций:

[аланин + альфа-кетоглутарат] / [пируват+глутамат].

МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ. ТЕОРИИ ФЕРМЕНТАТИВНОГО КАТАЛИЗА

Ферменты, как и небелковые катализаторы, увеличивают скорость химической реакции по причине способности снижать энергию активации этой реакции. Энергия активации ферментативной реакции рассчитывается как разность между значением энергии в системе протекающей реакции достигшей переходного состояния и энергией, определяемой в начале реакции (см. графическую зависимость рис. 22).

Рис. 22. Графическая зависимость энергетического состояния химической реакции без фермента (1) и в присутствии фермента (2) от времени течения реакции.

Работы В. Генри и, в особенности, Л. Михаэлиса, М. Ментен по изучению механизма моносубстратных обратимых ферментативных реакций позволили постулировать, что фермент Е сначала обратимо и относительно быстро соединяется со своим субстратом S c образованием фермент-субстратного комплекса (ЕS):

E + S <=> ES (1)

Образование ЕS происходит за счет водородных связей, электростатических, гидрофобных взаимодействий, в некоторых случаях ковалентных, координационных связей между боковыми радикалами аминокислотных остатков активного центра и функциональными группами субстрата. У сложных ферментов функцию контакта с субстратом может выполнить и небелковая часть структуры.

Фермент-субстратный комплекс затем распадается во второй более медленной обратимой реакции с образованием продукта реакции Р и свободного фермента Е:

ES <=> EР <=>E + P (2)

В настоящее время, благодаря работам выше названных ученых, а также Кейлина Д., Чанса Б., Кошленда Д. (теория «индуцированного соответствия»), существуют теоретические положения о четырёх основных моментах в механизме действия фермента на субстрат, определяющих способность ферментов ускорять химические реакции:

1. Ориентация и сближение . Фермент способен связывать молекулу субстрата таким образом, что атакуемая ферментом связь оказывается не только расположенной в непосредственной близости от каталитической группы, но и правильно ориентированной по отношению к ней. Вероятность того, что комплекс ES достигнет переходного состояния за счет ориентации и сближения, сильно увеличивается.

2. Напряжение и деформация : индуцированное соответствие. Присоединение субстрата может вызывать конформационные изменения в молекуле фермента, которые приводят к напряжению структуры активного центра, а также несколько деформируют связанный субстрат, облегчая тем самым достижение комплексом ES переходного состояния. Возникает так называемое индуцированное соответствие между молекулами E и S.

С повышением температуры среды скорость ферментативной реакции увеличивается, достигая максимума при какой-то оптимальной температуре, а затем падает до нуля. Для химических реакций существует правило, что при повышении температуры на 10°С скорость реакции увеличивается в два-три раза. Для ферментативных реакций этот температурный коэффициент ниже: на каждые 10°С скорость реакции увеличивается в 2 раза и даже меньше. Наступающее вслед за этим снижение скорости реакции до нуля свидетельствует о денатурации ферментного блока. Оптимальные значения температуры для большинства ферментов находятся в пределах 20 - 40 0 С. Термолабильность ферментов связана с их белковым строением. Некоторые ферменты денатурируют уже при температуре около 40 0 С, но основная часть их инактивируется при температурах выше 40 - 50 0 С. Отдельные ферменты инактивирует холод, т.е. при температурах, близких к 0°С, наступает денатурация.

Повышение температуры тела (лихорадочное состояние) ускоряет биохимические реакции, катализируемые ферментами. Нетрудно подсчитать, что увеличение температуры тела на каждый градус повышает скорость реакции примерно на 20%. При высоких температурах около 39-40°С расточительное использование эндогенных субстратов в клетках больного организма обязательно требуется восполнять их поступление с пищей. Кроме того, при температуре порядка 40°С часть весьма термолабильных ферментов может денатурироваться, что нарушает естественный ход биохимических процессов.

Низкая температура вызывает обратимую инактивацию ферментов вследствие незначительного изменения его пространственной структуры, но достаточного для нарушения соответствующей конфигурации активного центра и молекул субстрата.

Зависимость скорости реакции от рН среды

Для большинства ферментов имеется определенное значение рН, при котором их активность максимальна; выше и ниже этого значения рН активность этих ферментов уменьшается. Однако не во всех случаях кривые, описывающие зависимость активности фермента от рН, имеют колоколообразную форму; иногда эта зависимость может выражаться также прямой. Зависимость скорости ферментативной реакции от рН главным образом свидетельствует о состоянии функциональных групп активного центра фермента. Изменение рН среды влияет на ионизацию кислых и основных групп аминокислотных остатков активного центра, которые участвуют или в связывании субстрата (в контактном участке), или в его превращении (в каталитическом участке). Поэтому специфическое влияние рН может быть вызвано или изменением сродства субстрата к ферменту, или изменением каталитической активности фермента, или обеими причинами вместе.

Большинство субстратов имеют кислотные или основные группы, поэтому рН влияет на степень ионизации субстрата. Фермент предпочтительно связывается или с ионизированной, или с неионизированной формой субстрата. Очевидно, при оптимальном рН и функциональные группы активного центра находятся в наиболее реакционноспособном состоянии, и субстрат находится в форме, предпочтительной для связывания этими группами фермента.

При построении кривых, описывающих зависимость активности фермента от рН, измерения при всех значениях рН обычно проводят в условиях насыщения фермента субстратом, поскольку величина K m для многих ферментов изменяется с изменением рН.

Кривая, характеризующая зависимость активности фермента от рН, может иметь особенно простую форму в тех случаях, когда фермент действует на электростатически нейтральные субстраты или субстраты, у которых заряженные группы не играют существенной роли в каталитическом акте. Примером таких ферментов служит папаин, а также инвертаза, катализирующая гидролиз нейтральных молекул сахарозы и сохраняющая постоянную активность в интервале рН 3,0-7,5.

Значение рН, соответствующее максимальной активности фермента, не обязательно совпадает со значением рН, характерным для нормального внутриклеточного окружения этого фермента; последнее может быть как выше, так и ниже оптимума рН. Это позволяет предположить, что влияние рН на активность фермента может быть одним из факторов, ответственных за регулирование ферментативной активности внутри клетки. Поскольку в клетке содержатся сотни ферментов, и каждый из них по-разному реагирует на изменение рН, значение рН внутри клетки является, возможно, одним из важных элементов в сложной системе регуляции клеточного метаболизма.

Введение

Одним из характерных проявлений жизни является способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Зависимость скорости ферментативной реакции от концентрации субстрата

фермент субстрат биохимический ингибитор

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:

константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k-1) реакций, т.е.

В состоянии равновесия скорость прямой реакции:

v+1 = k+1[А]*[B]

равна скорости обратной реакции:

v-1 = k-1[С]*[D],

т.е. v+1 = v-1

соответственно k+1[А]*[B] = k-1[С]*[D],

Рис. 1.

реакции от концентрации субстрата при постоянной концентрации

фермента

а - реакция первого порядка (при [S]<Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxi скорость реакции не зависит от концентрации субстрата.

Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции

т.е. KS равна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KS зависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.

При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 1) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S -> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:

где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата; k" - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).

При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [S]. В этом случае реакция подчиняется кинетике нулевого порядка v=k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 1).

Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v - наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax - максимальная скорость реакции при полном насыщении фермента субстратом.

Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KS скорость реакции является максимальной, т.е. v=Vmax (реакция нулевого порядка, см. рис. 1). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка). Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции

и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:

где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:

Рис. 2. - Кривая уравнения Михаэлиса-Ментен: гиперболическая

зависимость начальных скоростей катализируемой ферментом реакции

от концентрации субстрата

В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1 представляет собой константу диссоциации фермент-субстратного комплекса KS, тогда:

Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KS на величину k+2/k+1.

Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции V составляет половину от максимальной Vmax, т.е. если V = 1/2 Vmaх. Подставляя значение V в уравнение Бриггса-Холдейна, получаем:

разделив обе части уравнения на Vmах, получим

Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.

Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 2). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.

Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата , неудобно, поскольку максимальная скорость Vmax является в данном случае асимптотической величиной и определяется недостаточно точно.

Рис. 3.

Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Холдейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если

то после преобразования получаем уравнение:

которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии:

Если теперь в соответствии с этим уравнением построить график в координатах 1/v(y) от l/[S](x), то получим прямую линию (рис. 3), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax (обратная величина максимальной скорости).

Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 3). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.

Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].

Следует отметить некоторые ограничения применения уравнения Михаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая

Рис. 4.

кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4) наподобие кривой насыщения гемоглобина кислородом. Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:

где К" - константа ассоциации; n - число субстрат связывающих центров.

Кинетика ферментативных реакций. Кинетика изучает скорости, механизмы реакций и влияние на них таких факторов, как концентрации ферментов и субстратов, темпера­тура, рН среды, присутствие ингибиторов или активаторов.

При постоянной концентрации субстрата скорость реакции прямо пропорциональна концентрации фермента. График зависимости скорости ферментативной реакции от кон­центрации субстрата имеет вид равнобочной гиперболы.

Зависимость скорости ферментативной реакции от концентрации фермента (а) и субстрата (б)

Зависимость скорости ферментативной реакции от концентрации субстрата описывается уравнением Михаэлиса - Ментен :

где V - стационарная скорость биохимической реакции; Vmax - максимальная скорость; Кm - константа Михаэлиса; [S] - концен­трация субстрата.

Если концентрация субстрата низкая, т. е. [S] << Кm, то [S] в знаменателе можно пренебречь.

Тогда

Таким образом, при низких концентраци­ях субстрата скорость реакции прямо пропор­циональна концентрации субстрата и описы­вается уравнением первого порядка. Это со­ответствует начальному прямолинейному уча­стку кривой V = f[S] (рисунок б).

При высоких концентрациях субстрата [S] >> Кm, когда Кm можно пренебречь, уравнение Михаэлиса - Ментен приобретает вид, т.е. V=Vmax.

Таким образом, при высоких концентрациях субстрата скорость реакции стано­вится максимальной и описывается уравнением нулевого порядка. Это соответствует участку кривой V =f [S], параллельному оси абсцисс.

При концентрациях субстрата, численно сравнимых с констан­той Михаэлиса, скорость реакции возрастает постепенно. Это вполне согласуется с представлениями о механизме ферментативной реак­ции:


где S - субстрат; Е - фермент; ES - фермент-субстратный комп­лекс; Р - продукт; k1 - константа скорости образования фермент-субстратного комплекса; k2 - константа скорости распада фермент-субстратного комплекса с образованием исходных реагентов; k3 - константа скорости распада фермент-субстратного комплекса с обра­зованием продукта.

Скорость превращения субстрата с образованием продукта (Р) про­порциональна концентрации фермент-субстратного комплекса . При малых концентрациях субстрата в растворе имеется некоторое число свободных молекул фермента (Е), не связанных в комплекс (ES). Поэтому при увеличении концентрации субстрата концентрация ком­плексов растет, следовательно, растет и скорость образования продук­та. При больших концентрациях субстрата все молекулы фермента связаны в комплекс ES (явление насыщения фермента), поэтому даль­нейшее повышение концентрации субстрата практически не увеличи­вает концентрацию комплексов и скорость образования продукта остается постоянной.

Таким образом, становится ясен физический смысл максимальной скорости ферментативной реакции. Vmах - это скорость, с которой реагирует фермент, полностью существующий в виде фермент-суб­стратного комплекса .

Константа Михаэлиса численно соответствует такой концентра­ции субстрата, при которой стационарная скорость равна половине максимальной. Данная константа характеризует кон­станту диссоциации фермент-субстратного комплекса:

Физический смысл константы Михаэлиса в том, что она характе­ризует сродство фермента к субстрату. Кm имеет малые значения, когда k1 > (k2 + k3), т.е. процесс образования комплекса ES преоб­ладает над процессами диссоциации ES. Следовательно, чем меньше значения Кm, тем сродство фермента к субстрату больше. И, наобо­рот, если Кm имеет большое значение, то (k2 + k3) > k1 и процессы диссоциации ES преобладают. В этом случае сродство фермента к субстрату небольшое.

Ингибиторы и активаторы ферментов . Ингибиторами ферментов называются вещества, снижающие активность ферментов. Любые денатурирующие агенты (например, соли тяжелых металлов, кислоты) являются неспецифическими ингибито­рами ферментов.

Обратимые ингибиторы - это соединения, которые нековалентно взаимодействуют с ферментом. Необратимые ингибиторы - это соединения, специфически связывающие функциональные группы активного центра и образующие ковалентные связи с ферментом.

Обратимое ингибирование разделяют на конкурентное и неконку­рентное. Конкурентное ингибирование предполагает структурное сход­ство ингибитора и субстрата. Ингибитор занимает место в активном центре фермента, и значительное количество молекул фермента ока­зывается блокировано. Конкурентное ингибирование можно снять, если повысить концентрацию субстрата. В этом случае субстрат вы­тесняет конкурентный ингибитор из активного центра.

Обратимое ингибирование может быть неконкурентным в отноше­нии субстрата. В этом случае ингибитор не конкурирует за место присоединения к ферменту. Субстрат и ингибитор связываются с раз­ными центрами, поэтому появляется возможность образования комп­лекса IE, а также и тройного комплекса IES, который может распа­даться с освобождением продукта, но с меньшей скоростью, чем комп­лекс ES.

По характеру своего действия ингибиторы подразделяются на:

  • спе­цифические,
  • неспецифические.

Специфические ингибиторы оказывают свое действие на фермент, присоединяясь ковалентной связью в активном центре фермента и выключая его из сферы действия.

Неспецифическое ингибирование предполагает воздействие на фер­мент денатурирующих агентов (солей тяжелых металлов, мочевины и др.). В этом случае в результате разрушения четвертичной и третич­ной структуры белка происходит потеря биологической активности фермента.

Активаторы ферментов - это вещества, увеличивающие скорость фермен­тативной реакции. Чаще всего в качестве активаторов выступают ионы метал­лов (Fe2+, Fe3+, Cu2+, Co2+, Mn2+, Mg2+ и т.д.). Различают металлы, находящиеся в составе металлоферментов, являющиеся кофакторами, и вы­ступающие в качестве активаторов ферментов. Кофакторы могут прочно связы­ваться с белковой частью фермента, что же касается активаторов, то они легко отделяются от апофермента. Такие металлы являются обязательными участника­ми каталитического акта, определяющими активность фермента. Активаторы уси­ливают каталитическое действие , но их отсутствие не препятствует протека­нию ферментативной реакции. Как правило, металл-кофактор взаимодейству­ет с отрицательно заряженными группировками субстрата. Металл с переменной валентностью принимает участие в обмене электронов между субстратом и ферментом. Кроме того, они принимают участие в образовании ста­бильной переходной конформации фермента, что способствует более быстро­му образованию ES комплекса.

Регуляция активности ферментов . Одним из основных механизмов регуляции метаболизма служит регуляция активности ферментов. Одним из примеров является аллостерическая регуляция, регуляция посредством активаторов и ингибиторов. Часто бывает так, что конечный продукт метаболического пути является ингибитором регуляторного фермента. Такой тип ингибирования называется ретроингибированием, или ингибированием по принципу отрицательной обратной связи.

Многие ферменты вырабатываются в виде неактивных предше­ственников-проферментов, а затем в нужный момент активируются за счет частичного протеолиза. Частичный протеолиз - отщепление части молекулы, которое приводит к изменению третичной структуры белка и формированию активного центра фермента.

Некоторые ферменты-олигомеры могут изменять свою активность за счет ассоциации - диссоциации субъединиц , входящих в их со­став.

Многие ферменты могут находиться в двух формах: в виде про­стого белка и в виде фосфопротеида. Переход из одной формы в дру­гую сопровождается изменением каталитической активности.

Скорость ферментативной реакции зависит от количества фермента , которое в клетке определяется соотношением скоростей его синтеза и распада. Этот способ регуляции скорости ферментативной реакции является более медленным процессом, чем регуляция активности фер­мента.

Кинетика ферментативных реакций. Этот раздел энзимологии изучает влияние хими ческих и физических факторов на скорость ферментативной реакции. В 1913 г. Михаэлис и Ментен создали теорию ферментативной кинетики, исходя из того, что фермент (Е) вступает во взаимодействие с субстратом (S) с образованием промежуточного ферментсубстратного комплекса (ЕS), который далее распадается на фермент и продукт реакции по уравнению:

Каждый этап взаимодействия субстрата с ферментом характеризуется своими константами скорости. Отношение суммы констант скорости распада ферментсубстратного комплекса к константе скорости образования ферментсубстратного комплекса называется константой Михаелиса (Кm). Она определят сродство фермента к субстрату. Чем ниже константа Михаелиса, тем выше сродство фермента к субстрату, тем выше скорость ка тализируемой им реакции. По величине Кm каталитические реакции можно поделить на быстрые (Кm 106 моль/л и меньше) и медленные (Кm 102 до 106).

Скорость ферментативной реакции зависит температуры, реакции среды, концентрации реагирующих веществ, количества фермента и других факторов.

1. Рассмотрим зависимость скорости реакции от количест ва фермента. При условии избытка субстрата скорость реакции пропорциональна количеству фермента, но при избыточном количестве фермента прирост скорости реакции будет сни жаться, поскольку уже не будет хватать субстрата.

2. Скорость химических реакций пропорциональна концентрации реагирующих ве ществ (закон действующих масс). Этот закон применим и для ферментативных реакций, но с определенными ограничениями. При постоян

ных количествах фермента скорость реакции действительно пропорциональна концентрации субстрата, но, только в области низких концен траций. При высоких концентрациях субстрата наступает насыщение фермента субстратом, то есть наступает такой момент, когда уже все мо лекулы фермента задействованы в каталитическом процессе и прироста скорости реакции не будет. Скорость реакции выходит на макси мальный уровень (Vmax) и дальше уже не зависит от концентрации субстрата. Зависимость скорости реакции от концентрации субстрата следует определять в той части кривой, кото рая ниже Vmax. Технически легче определить не максимальную скорость, а ½ Vmax. Этот параметр является главной характеристикой ферментативной реакции и дает возможность определить константу Михаелиса (Кm).

Кm (константа Михаэлиса) – это такая концентрация субстрата, при которой ско рость ферментативной реакции равна по ловине максимальной. Отсюда выводится уравнение Михаэлиса–Ментена скорости ферментативной реакции.