Круги эйлера в краткой форме. Круги Эйлера: почему один раз увидеть лучше, чем сто раз услышать. Изображение с помощью кругов эйлера

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ «КРУГОВ ЭЙЛЕРА»

Рыбина Ангелина

Класс 5 «Д», МОУ «СОШ № 59 с УИП», РФ, г. Саратов

Багаева Ирина Викторовна

научный руководитель, педагог высшей категории, преподаватель математики, МОУ «СОШ № 59 с УИП», РФ, г. Саратов

«… круги очень подходят для того, чтобы облегчить наши размышления»

Леонард Эйлер

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

В 1741 году Эйлер пишет «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе...», где появились впервые «круги Эйлера». Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления».

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов и они получили название «круги Эйлера».

С помощью этих кругов Эйлер изобразил и множество всех действительных чисел:

· N - множество натуральных чисел,

· Z - множество целых чисел,

· Q - множество рациональных чисел,

· R - множество всех действительных чисел.

Рисунок 1. Изображение множества действительных чисел

Что такое множество?

В математике нет точного определения этого понятия. Понятие «множество» не определяется, оно поясняется примерами: множество яблок в корзине; множество точек отрезка прямой. Множество состоит из элементов. В приведенных примерах - это яблоки, буквы, точки.

Множества обозначаются заглавными буквами латинского алфавита: А, В, С, ... K, M, N … Х, ...; элементы множества - строчными буквами алфавита: а, в, с, ... k, m, n … х, у, .... А={а; в; с; d} - множество А состоит из элементов а, в, с, d, или, говорят, что элемент а принадлежит множеству А, записывается: аА (знак читается: «принадлежит»). Элемент 5 не входит в множество А, говорят, что «5 не принадлежит А»: 5 А, или . Если множество В не содержит ни одного элемента, то говорят, что оно пустое, обозначается: В=.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества . Примерами множеств могут быть и дома на нашей улице, и алфавит - совокупность букв, и наш 5 «Д» класс - множество учеников.

Множества могут быть:

· Конечное (элементы которого можно пересчитать; например - множество цифр)

· Пустое (не содержащее ни одного элемента; например - множество зайцев, которые учатся в нашем классе).

Множество K называется подмножеством множества N, если каждый элемент множества K является элементом множества N. Обозначается: KÍN. Говорят, что множество K включается в множество N.

Подмножества можно проиллюстрировать кругами Эйлера.

Рисунок 2. Изображение подмножества

Действия с множествами

В математике существуют несколько операций над множествами. Мы разберем два из них: пересечение и объединение.

1. Пересечение множеств

Пересечением множеств M и N называется множество, состоящее из элементов, одновременно принадлежащих M и N . Пересечение множеств M и N обозначается .

Пример. Множество N = { А Н Д Р Е Й };

множество K = { А Л Е К С Е Й }; множество M = { Д М И Т Р И Й }

Рисунок 3. Пример пересечения множеств

2. Объединение множеств

Объединение множеств - это множество, содержащее в себе все элементы исходных множеств. Объединение множеств M и N обозначается .

Пример ; 2) объединение множества всех пород собак и множества мопсов есть множество всех собак.

Операции объединения и пересечения множеств очень удобно показывать с помощью кругов Эйлера.

По определению в пересечение двух множеств M и N входят элементы, принадлежащие множествам M и N одновременно

Пример. Пусть D - множество из 12 самых хороших девочек, M - множество из 12 самых умных мальчиков. Получили наш класс.

Рисунок 4. Пример объединения множеств

3. Вложенные множества.

Пример. Имеется три множества: «дети», «школьники», «учащиеся начальной школы». Мы видим, что эти 3 множества находятся одно внутри другого. Про множество, находящееся внутри другого множества, говорят, что оно вложенное.

Рисунок 5. Пример вложенных множеств

Задачи, которые можно решить с помощью диаграмм Эйлера

Задача № 1

На стол бросили две салфетки 10 см х 10 см. Они покрыли площадь стола, равную 168. Какова площадь перекрытия?

1)168 – 10 х 10 = 68;

2)10 х 10 – 68 = 32.

Ответ: 32 см

Рисунок 6. Рисунок к задаче № 1

Задача № 2

В поход ходили 80 % учеников класса, а на экскурсии было 60 %, причем каждый был в походе или на экскурсии. Сколько процентов класса были и там, и там?

А - множество учеников, которые ходили в поход

В - множество учеников, которые были на экскурсии

100 % – 80 % = 20 %

60 % – 20 % = 40 %

Ответ: 40 %

Рисунок 7. Рисунок к задаче № 2

Задача № 3

В нашем классе 24 ученика. Все они хорошо провели зимние каникулы.10 человек катались на лыжах, 16 ездили на каток, а 12 - лепили снеговиков. Сколько учеников смогли покататься и на лыжах, и на коньках, и слепить снеговика?

А - множество ребят, катающихся на лыжах

В - множество ребят, катающихся на коньках

С - множество ребят, лепивших снеговиков

Пусть х - число ребят,

которые успели за эти каникулы всё!

(12 - х) + (16 - х) + (10 - х) + х = 24

Ответ: 7 ребят

Рисунок 8. Рисунок к задаче № 3

Задача № 4

9 моих друзей любят бананы, 8 – апельсины, а 7 – сливы, 5 – бананы и апельсины, 3 – бананы и сливы, 4 – апельсины и сливы, 2 – бананы, апельсины и сливы. Сколько у меня друзей?

5 – 2 = 3 3 – 2 = 1 4 – 2 = 2

9 – 6 = 3 8 – 7 = 1 7 – 5 = 2

3 + 1 + 2 + 3 + 2 + 1 + 2 = 14

Ответ: 14 друзей

Рисунок 9. Рисунок к задаче № 4

Задача № 5

В пионерском лагере «Дубки» в смене актива отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. 10 человек были и отличниками и победителями олимпиад, 5 - отличниками и спортсменами, 8 - спортсменами и победителями олимпиад, 3 - и отличники, и спортсмены, и победители олимпиад.

Сколько ребят отдыхали в лагере?

А - множество отличников

В - множество победителей олимпиад

С - множество спортсменов

10 – 3 = 7 5 – 3 = 2 8 – 3 = 5

30 – 12 = 18 28 – 15 = 13 42 – 10 = 32

18 + 13 + 32 + 7 + 2 + 5 + 3 = 80

Ответ: 80 ребят

Рисунок 10. Рисунок к задаче № 5

3. Заключение

Диаграммы Эйлера - это общее название целого ряда способов графической иллюстрации, широко используемых в различных областях математики: теория множеств, теория вероятностей, логика, статистика, компьютерные науки, и др. Применение кругов Эйлера позволяет даже пятикласснику легко решать задачи, которые обычным путем решаются только в старших классах.

Список литературы:

1.Александрова Р.А., Потапов А.М. Элементы теории множеств и математической логики. Практикум / Калининград. 1997. - 66 с.

2.Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 кл. М.: Просвещение, 1999. с. 189-191, 231.

3.Задачи для внеклассной работы по математике в V-VI классах: Пособие для учителей / Сост. В.Ю. Сафонова. Под ред. Д.Б. Фукса, А.Л. Гавронского. М.: МИРОС, 1993. - с. 42.

4.Занимательная математика. 5-11 классы. Как сделать уроки нескучными / Авт. сост. Т.Д. Гаврилова. Волгоград: Учитель, 2005. - с. 32-38.

5.Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО Пресс, 2009. - с. 14-20.

6.Энциклопедия для детей. Т. 11. Математика Глав.ред. М.Д. Аксёнова. М.: Аванта +, 2001. - с. 537-542.

Каждый предмет или явление обладает некими свойствами (признаками).

Получается, что составить понятие об объекте означает, прежде всего, умение отличить его от других сходных с ним объектов.

Можно сказать, что понятие - это мысленное содержание слова.

Понятие - это форма мысли, отображающая предметы в их наиболее общих и существенных признаках.

Понятие - это форма мысли, а не форма слова, так как слово лишь метка, которой мы помечаем ту или иную мысль.

Слова могут быть различны, но при этом обозначать одно и то же понятие. По-русски - «карандаш», по-английски - «pencil», по-немецки - bleistift. Одна и та же мысль в разных языках имеет разное словесное выражение.

ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ. КРУГИ ЭЙЛЕРА.

Понятия, имеющие в своих содержаниях общие признаки, называются СРАВНИМЫМИ («адвокат» и «депутат»; «студент» и «спортсмен»).

В противном случае, понятия считаются НЕСРАВНИМЫМИ («крокодил» и «блокнот»; «человек» и «пароход»).

Если кроме общих признаков понятия имеют и общие элементы объёма, то они называются СОВМЕСТИМЫМИ .

Существует шесть видов отношений между сравнимыми понятиями. Отношения между объёмами понятий удобно обозначать с помощью кругов Эйлера (круговые схемы, где каждый круг обозначает объём понятия).

ВИД ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ ИЗОБРАЖЕНИЕ С ПОМОЩЬЮ КРУГОВ ЭЙЛЕРА
РАВНОЗНАЧНОСТЬ (ТОЖДЕСТВЕННОСТЬ) Объёмы понятий полностью совпадают. Т.е. это понятия, которые различаются по содержанию, но в них мыслятся одни и те же элементы объёма. 1) А - Аристотель В - основатель логики 2) А - квадрат В - равносторонний прямоугольник
ПОДЧИНЕНИЕ (СУБОРДИНАЦИЯ) Объём одного понятия полностью входит в объём другого, но не исчерпывает его. 1) А - человек В - студент 2) А - животное В - слон
ПЕРЕСЕЧЕНИЕ (ПЕРЕКРЕЩИВАНИЕ) Объёмы двух понятий частично совпадают. То есть понятия содержат общие элементы, но и включают элементы, принадлежащие только одному из них. 1) А - юрист В - депутат 2) А - студент В - спортсмен
СОПОДЧИНЕНИЕ (КООРДИНАЦИЯ) Понятия, не имеющие общих элементов, полностью входят в объём третьего, более широкого понятия. 1) А - животное В - кот; С - собака; D - мышь 2) А - драгоценный металл В - золото; С - серебро; D - платина
ПРОТИВОПОЛОЖНОСТЬ (КОНТРАРНОСТЬ) Понятия А и В не просто включены в объём третьего понятия, а как бы находятся на его противоположных полюсах. То есть, понятие А имеет в своём содержании такой признак, которых в понятии В заменён на противополжный. 1) А - белый кот; В - рыжий кот (коты бывают и чёрными и серыми) 2) А - горячий чай; холодный чай (чай может быть и тёплым) Т.е. понятия А и В не исчерпывают всего объёма понятия, в которое они входят.
ПРОТИВОРЕЧИЕ (КОНТРАДИКТОРНОСТЬ) Отношение между понятиями, одно из которых выражает наличие каких-либо признаков, а другое - их отсутствие, то есть просто отрицает эти признаки, не заменяя их никакими другими. 1) А - высокий дом В - невысокий дом 2) А - выигрышный билет В - невыигрышный билет Т.е. понятия А и не-А исчерпывают весь объём понятия, в которое они входят, так как между ними нельзя поставить никакое дополнительное понятие.

Упражнение : Определите вид отношений по объёму приведённых ниже понятий. Изобразите их с помощью кругов Эйлера .


1) А - горячий чай; В - холодный чай; С - чай с лимоном

Горячий чай (В) и холодный чай (С) - находятся в отношении противоположности.

Чай с лимоном (С) может быть как горячим,

так и холодным, но может быть и, например, тёплым.

2) А - деревянный; В - каменный; С - строение; D - дом.

Всякое ли строение (С) - дом (D)? - Нет.

Всякий ли дом (D) - строение (С)? - Да.

Что-то деревянное (А) обязательно ли дом (D) или строение (С) - Нет.

Но можно найти деревянное строение (например, будка),

также можно найти деревянный дом.

Что-то каменное (В) не обязательно дом (D) или строение (С).

Но может быть и каменное строение, и каменный дом.

3) А - российский город; В - столица России;

С - Москва; D - город на Волге; Е - Углич.

Столица России (В) и Москва (С) - один и тот же город.

Углич (Е) является городом на Волге (D).

При этом, Москва, Углич, как и любой город на Волге,

являются российскими городами (А)

П О Н Я Т И Е

Каждый предмет или явление обладает некими свойствами (признаками).

Получается, что составить понятие об объекте означает, прежде всего, умение отличить его от других сходных с ним объектов.

Можно сказать, что понятие – это мысленное содержание слова.

Понятие – это форма мысли, отображающая предметы в их наиболее общих и существенных признаках*.

Понятие – это форма мысли, а не форма слова, так как слово лишь метка, которой мы помечаем ту или иную мысль.

Слова могут быть различны, но при этом обозначать одно и то же понятие. По-русски – «карандаш», по-английски – «pencil», по-немецки – bleistift. Одна и та же мысль в разных языках имеет разное словесное выражение.

ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ. КРУГИ ЭЙЛЕРА.

Понятия, имеющие в своих содержаниях общие признаки, называются СРАВНИМЫМИ («адвокат» и «депутат»; «студент» и «спортсмен»).

В противном случае, понятия считаются НЕСРАВНИМЫМИ («крокодил» и «блокнот»; «человек» и «пароход»).

Если кроме общих признаков понятия имеют и общие элементы объёма, то они называются СОВМЕСТИМЫМИ .

Существует шесть видов отношений между сравнимыми понятиями. Отношения между объёмами понятий удобно обозначать с помощью кругов Эйлера (круговые схемы, где каждый круг обозначает объём понятия).

ВИД ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ

ИЗОБРАЖЕНИЕ С ПОМОЩЬЮ КРУГОВ ЭЙЛЕРА

РАВНОЗНАЧНОСТЬ (ТОЖДЕСТВЕННОСТЬ)

Объёмы понятий полностью совпадают.

Т.е. это понятия, которые различаются по содержанию, но в них мыслятся одни и те же элементы объёма.

1) А – Аристотель

В – основатель логики

2) А – квадрат

В – равносторонний прямоугольник

ПОДЧИНЕНИЕ (СУБОРДИНАЦИЯ)

Объём одного понятия полностью входит в объём другого, но не исчерпывает его.

1) А – человек

В – студент

2) А – животное

ПЕРЕСЕЧЕНИЕ (ПЕРЕКРЕЩИВАНИЕ)

Объёмы двух понятий частично совпадают. То есть понятия содержат общие элементы, но и включают элементы, принадлежащие только одному из них.

1) А – юрист

В – депутат

2) А – студент

В – спортсмен

СОПОДЧИНЕНИЕ (КООРДИНАЦИЯ)

Понятия, не имеющие общих элементов, полностью входят в объём третьего, более широкого понятия.

1) А – животное

В – кот; С – собака; D – мышь

2) А – драгоценный металл

В – золото; С – серебро;

D - платина

ПРОТИВОПОЛОЖНОСТЬ (КОНТРАРНОСТЬ)

Понятия А и В не просто включены в объём третьего понятия, а как бы находятся на его противоположных полюсах. То есть, понятие А имеет в своём содержании такой признак, которых в понятии В заменён на противополжный.

1) А – белый кот; В – рыжий кот

(коты бывают и чёрными и серыми)

2) А – горячий чай; холодный чай

(чай может быть и тёплым)

Т.е. понятия А и В не исчерпывают всего объёма понятия, в которое они входят.

ПРОТИВОРЕЧИЕ (КОНТРАДИКТОРНОСТЬ)

Отношение между понятиями, одно из которых выражает наличие каких-либо признаков, а другое – их отсутствие, то есть просто отрицает эти признаки, не заменяя их никакими другими.

1) А – высокий дом

В – невысокий дом

2) А – выигрышный билет

В – невыигрышный билет

Т.е. понятия А и не-А исчерпывают весь объём понятия, в которое они входят, так как между ними нельзя поставить никакое дополнительное понятие.

Упражнение: Определите вид отношений по объёму приведённых ниже понятий. Изобразите их с помощью кругов Эйлера.

1) А – горячий чай; В – холодный чай; С – чай с лимоном

Горячий чай (В) и холодный чай (С) – находятся

в отношении противоположности.

Чай с лимоном (С) может быть как горячим,

так и холодным, но может быть и, например, тёплым.

2) А – деревянный; В – каменный; С – строение; D – дом.

Всякое ли строение (С) – дом (D)? – Нет.

Всякий ли дом (D) – строение (С)? – Да.

Что-то деревянное (А) обязательно ли дом (D) или строение (С) – Нет.

Но можно найти деревянное строение (например, будка),

также можно найти деревянный дом.

Что-то каменное (В) не обязательно дом (D) или строение (С).

Но может быть и каменное строение, и каменный дом.

3) А – российский город; В – столица России;

С – Москва; D – город на Волге; Е – Углич.

Столица России (В) и Москва (С) – один и тот же город.

Углич (Е) является городом на Волге (D).

При этом, Москва, Углич, как и любой город на Волге,

являются российскими городами (А)

Круги Эйлера - одна из самых простых тем, которые необходимы Вам для поступления в 5 класс физико-математических лицеев . На самом деле, круги Эйлера - это ни что иное, как графическое представление множеств. Объекты, обладающие определённым свойством находятся внутри круга Эйлера-Венна , не обладающие - находятся вне. Разумеется, обычно на диаграмме присутствует не один круг, а несколько, каждый из которых объединяет объекты с каким-то своим свойством. Любая задача из данного блока сводится к тому, что необходимо посчитать количество элементов в какой-либо области. Разберём на примерах, что же надо делать:

Задачи на множества людей

В классе учится учеников. изучают английский, немецкий и французский. Ни одного языка не знают человека. Также известно, что из всех ребят только один мальчик изучает языка: английский и французский. Сколько человек изучает языка?

Для решения задачи обозначим количество искомых учеников за (тех, кто изучает языка). Количество учеников, изучающих другое количество языков выразим через и условия в задаче. Диаграмма Эйлера-Венна в данном случае будет выглядеть следующим образом: Например, ребята, которые знают только английский язык, обозначены красным цветом и их количество .

Заметим, что у нас никак не использовано общее количество учеников - это условие и породит то самое уравнение, с помощью которого решится задача:





Получается, что все языка изучают человек (Можете теперь, зная , самостоятельно восстановить сколько каких учеников было в классе и проверить ответ)

Задачи на делимость (сложная делимость)

Это задачи уже повышенной сложности. Предварительно советуем изучить тему . Обязательно к прочтению только тем, кто собирается занимать призовые места.

Для скольких чисел между и верно следующее утверждение: число делится на или не делится на ?

Такое страшное и непонятное условие становится простым, если воспользоваться кругами Эйлера . Понятно, что в этой задаче рассматриваются числа, которые - нас интересуют те, что внутри соответствующего круга. Также есть числа, которые vdots 12 - нас интересуют числа, которые вне. А что же с числами, которые принадлежат обоим множествам? Во-первых, каким общим свойством они обладают, а во-вторых, интересуют ли они нас?

Сначала ответим на первый вопрос. Оказывается, если число одновременно делится на два других числа, то оно делится на Наименьшее Общее Кратное этих двух чисел, то есть на минимальное число, которое делится без остатка на оба исследуемых. Для чисел и НОК есть ничто иное, как число , так как и , а меньше числа с такими свойствам нет. Итого, в пересечении наших множеств лежат числа, которые .

Далее необходимо заметить, что в условии употреблено слово "ИЛИ" . Это значит, что для искомых чисел должно быть верно ХОТЯ БЫ ОДНО из предложенных утверждений (возможно и оба). То есть нам подходят числа которые внутри круга чисел, которые , а также все числа, которые вне круга .

Итак, диаграмма Эйлера-Венна выглядит следующим образом: Штриховкой обозначены те числа, которые и надо найти. Теперь, надеюсь, очевидно, что нам необходимо найти, сколько всего числе в рассматриваемой задаче, из этого количества вычесть количество чисел, которые и прибавить количество чисел, которые .

Итак, приступим:


Получается, что искомых чисел

Итак, подведём итог. Если Вы собираетесь поступать в 5 класс физико-математического лицея , то общие знания по кругам Эйлера-Венна Вам необходимы. Основная область применения - задачи, где присутствуют множества объектов, обладающих определёнными свойствами, и необходимо найти количество объектов обладающих (или не обладающих) совокупностью указанных свойств.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В наше время вокруг нас собрано огромное количества информации, разобраться в ней бывает непросто. Поэтому многие не знают, что за названием «Круги Эйлера» скрывается практичный и удобный метод решения различных задач. Все слышали о них, но немногие могут объяснить, что это такое. Однако я считаю, что Круги Эйлера полезны как в повседневной жизни, так и в науке, поэтому ими стоит уметь пользоваться каждому. В этой работе я собрала всю необходимую информацию для понимания, что такое Круги Эйлера и где их удобно применять.

Круги Эйлера — это геометрическая схема, с помощью которой можно наглядно изобразить отношения между различными множествами и подмножествами. Такая схема помогает находить логические связи между явлениями и понятиями, она изобретена Леонардом Эйлером, используется в математике и других научных дисциплинах. Использование Кругов Эйлера упрощает рассуждения и помогает быстрее и проще получить ответ. (1),(2)

Круги Эйлера неотрывно связаны с понятием множества. Поэтому, чтобы лучше понимать, что изображено на кругах Эйлера, нужно знать, что такое множество и какие множества бывают.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества. Во множества можно объединять любые объекты с общим признаком. Например, множество учеников гимназии 11, учащихся в 7 «Б» классе составляют отдельное множество. Множества могут быть и неодушевленных предметов. Например, множество книг, написанных каким-либо автором. С помощью кругов Эйлера множество обозначается, как пустой круг, а входящие в него элементы - точками. (5)

Давайте изобразим множество цифр. На рисунке контуром обозначено множество, а точками элементы этого множества.

Множества бывают трех видов:

· Конечное (например - множество цифр)

· Бесконечное (например - множество чисел)

· Пустое (множество натуральных чисел

меньше нуля). (5)

Группа предметов, образующая множество, входящее в состав более обширного множества, изображается в виде меньшего круга, нарисованного внутри большего круга, и называется подмножеством. Такое отношение образуется между большим множеством животных и входящим в его состав подмножеством плоских червей. (5)

В тех случаях, когда два понятия совпадают только частично, отношение между такими множествами изображается с помощью двух перекрещивающихся кругов. Такое отношение образуется между множеством учащихся 7 «Б» класса и множество троечников. Некоторые элементы множества учеников 7 «Б» класса принадлежат и к множеству троечников. (5)

Когда ни один предмет, из одного множества, не может одновременно принадлежать второму множеству, то отношение между ними изображается посредством двух кругов, нарисованных один вне другого. Такими множествами являются множество отрицательных и множество положительных чисел. (5)

Круги Эйлера были изобретены и названы в честь Леона́рда Э́йлера (портрет слева). Это был швейцарский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлер родился в Швейцарии, учился в Германии, но работал и умер в России. Этот ученый - автор 800 работ. Леонард Эйлер родился в 1707 году в семье пастора. Его отец был другом семьи Бернулли. У Эйлера рано проявились математические способности. Обучаясь в гимназии, мальчик увлечённо занимался математикой, а позже стал посещать университетские лекции Иоганна Бернулли. 20 октября 1720 года Леонард Эйлер стал студентом факультета искусств Базельского университета. Одаренный молодой человек обратил на себя внимание профессора Иоганна Бернулли. Он передал студенту математические статьи для изучения, а также пригласил приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер встретился и начал общаться с сыновьями Бернулли — Даниилом (портрет слева) и Николаем (потрет справа), которые тоже занимались математикой. (6)

Юный Эйлер написал несколько научных работ. «Диссертация по физике о звуке» получила благоприятный отзыв. В то время число научных вакансий в Швейцарии было невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где начинала создаваться Российская Академия наук; они обещали похлопотать там и о должности для Эйлера. В начале зимы 1726 года Эйлеру пришло письмо из Санкт - Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии с окладом 200 рублей. Эйлер провёл много времени в России, где внёс существенный вклад в российскую науку. С 1731 был избран академиком Петербургской Академии. Хорошо знал русский язык, а сочинения и учебники публиковал на русском. (6)

Тогда Эйлер подробно описывает свой метод решения некоторых задач при помощи кругов Эйлера. В 1741 году Эйлер пишет «Письма о разных физических и философических материях, к некоторой немецкой принцессе..», где упоминаются «круги Эйлера». Эйлер писал, что «круги очень подходят для того, чтобы облегчить наши размышления». (3)

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли по-своему. Бернард Больцано использовал тот же метод, но с прямоугольными схемами. Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна. Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только. (1)

Вот несколько задач для решения, которых, удобно использовать круги Эйлера:

Задача 1.

У ребят из одной школы спрашивали об их домашних животных. 100 из них ответили, что у них дома есть собака и/или кошка. У 87 ребят была одна собака, а у 63 ребят - одна кошка. У скольких ребят есть и собака и кошка?

Решение:

    Чтобы решить эту задачу, не используя круги Эйлера нужно подсчитать, сколько собак и кошек было у учеников. Для этого нужно сложить 87 и 63. 87+63=150 домашних животных. Учеников было всего лишь 100, а дробного числа домашних животных получиться не может. Значит если у каждого ученика 1 домашнее животное, остается еще 50 лишних. Следовательно, у 50 учеников 2 домашних животных. И так как в задаче указано, что ни у одного из учеников нет 2 кошек или 2 собак, то это значит, что у 50 учеников есть и кошка и собака.

Но этот способ долгий и подходит только для простых задач. Такую задачу намного удобнее решить через круги Эйлера.

Красным кругом изобразим множество обладателей собак, а синим множество обладателей кошек. Всего учеников было 100. Тех, у кого есть и кошка, и собака Х. Чтобы найти количество учеников, у которых только собака нужно из 87 вычесть Х. Так как всего учеников 100, мы получаем:

Х=50 учеников

Ответ: у 50 учеников есть и кошка и собака

Задача 2.

Однажды учеников спросили, кто из них любит математику, кому нравится русский язык, а кому физика. Оказалось, что из 36 учеников 2 не любят ни математику, ни русский, ни физику. Математика нравится 25 ученикам, русский язык- 11, физика - 17 ученикам; и математика, и русский- 6; и математика, и физика- 10; русский язык и физика - 4.

Сколько человек любят все три предмета?

Решение:

Изобразим 3 множества. Красное множество тех, кто любит математику, синие тех, кто любит русский язык, зеленое - физику.

Теперь впишем в множества количество элементов. 6 человек любят и русский и математику. Из них X человек любят еще и физику. Значит, только математику и русский любят 6-Х человек. Только математику и физику 10-Х, только русский и физику 4-Х человек. 25 человек любят математику. Но Х, 6-Х, 10-Х человек любят и другие предметы. Значит, только математику любят 25-(6-Х)-(10-Х)-Х= 25-6+Х-10+Х -Х=5+Х человек. Только русский любят 11-(6-Х)-(4-Х)-Х= 11-10+2Х-Х=1+Х учеников, только физику 17-(10-Х) -(4-Х)-Х= 17-14+2Х-Х= 3+Х.

Так как 2 человека не любят ни один из этих предметов, то:

3+Х+9+Х+1+Х+6-Х+10-Х+4-Х+Х=36-2

Ответ: 1 человек любит все три предмета

Задача 3.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Какое количество страниц (в тысячах) будет найдено по запросу природа? (4)

Решение :

По запросу человек было найдено 2100 тысяч страниц. 900 из них еще и о природе. Значит страниц только о человеке 2100-900=200 тысяч, а только о природе Х-900 тысяч. Получаем, что:

2100-900+Х-900+900=3400

2100-900+Х=3400

Х=2200 тысяч страниц

Ответ: по запросу природа будет найдено 2200 тысяч страниц.

Как видите Круги Эйлера - это полезное и важное открытие для математики в целом и для каждого из нас в частности. Круги Эйлера встречаются не только на экзаменах, но и нужны нам в повседневной жизни. Это интересная и необходимая вещь, о которой не стоит забывать.

Литература:

    https://www.tutoronline.ru/blog/krugi-jejlera

    https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D0%B3%D0%B8_%D0%AD%D0%B9%D0%BB%D0%B5%D1%80%D0%B0

    http://sibac.info/shcoolconf/science/xvii/42485

    http://www.jwy.narod.ru/logic/_04_eiler.html

    https://ru.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BB%D0%B5%D1%80,_%D0%9B%D0%B5%D0%BE%D0%BD%D0%B0%D1%80%D0%B4