Свойства гравитационных сил. Купить диплом о высшем образовании недорого. От чего зависит ускорение в описанном случае

Гравитация – это, казалось бы, простое понятие, известное каждому человеку еще со времен школьной скамьи. Все мы помним историю о том, как на голову Ньютона упало яблоко, и он открыл закон всемирного тяготения. Однако все не так просто, как кажется. В той статье мы попытаемся дать ясный и исчерпывающий ответ на вопрос: что такое гравитация? А также рассмотрим главные мифы и заблуждения об этом интересном явлении.

Говоря простыми словами, гравитация — это притяжение между двумя любыми объектами во вселенной. Гравитацию можно определить, зная массу тел и расстояние от одного до другого. Чем сильнее гравитационное поле, тем больше будет вес тела и выше его ускорение. Например, на Луне вес космонавта будет в шесть раз меньше, чем на Земле. Сила гравитационного поля зависит от размеров объекта, который оно окружает. Так, лунная сила притяжения в шесть раз ниже земной. Впервые обосновал это научно и доказал с помощью математических вычислений ещё в XVII веке Исаак Ньютон.

Что упало на голову Ньютону

Несмотря на то, что сам великий английский ученый частично подтверждал известную всем легенду о яблоке и ушибе головы, всё же, сейчас можно сказать с уверенностью, что при открытии закона всемирного тяготения обошлось без травм и озарений. Основой, заложившей новую эру в естественных науках, стал труд «Математические начала натуральной философии». В нем Ньютон описывает закон тяготения и важные законы механики, открытые им за долгие годы напряженной работы. Знаменитый физик был натурой неторопливой и рассудительной, как и положено гениальному ученому. А поэтому от начала раздумий о природе тяготения до издания научной работы о ней прошло больше 20 лет. Впрочем, легенда об упавшем фрукте могла иметь под собой и какие-то реальные основания, вот только голова физика однозначно осталась цела.

Законы притяжения изучались и до Исаака Ньютона самыми различными научными деятелями. Но только он впервые математически доказал прямую взаимосвязь между тяготением и движением планет. То есть падающим с ветки яблоком и вращением луны вокруг земли управляет одна и та же сила – гравитация. И она действует на любые два тела во вселенной. Эти открытия заложили основу так называемой небесной механики, а также науки о динамике. Ньютоновская модель господствовала в науке более двух веков вплоть до появления теории относительности и квантовой механики.

Что думают о гравитации современные ученые

Гравитация является самым слабым из четырех известных на данный момент фундаментальных взаимодействий, которым подчиняются все частицы и составленные из них тела. Помимо гравитационного взаимодействия сюда же входят электромагнитное, сильно и слабое. Исследуются они на основании разных теорий, так, например, в приближенных скоростях небольшой гравитации применяют теорию тяготения еще самого Ньютона. А в общем случае используют общую теорию относительности Эйнштейна. Кроме того, описание гравитации в квантовом пределе должно будет осуществляться при помощи еще не появившейся квантовой теории.

Безусловно, сегодня физика сложна и выходит далеко за рамки представлений об окружающем мире обычного человека. Но интересоваться ей необходимо хотя бы на уровне основных понятий, ведь вполне возможно, что уже в ближайшее время мы можем стать свидетелями удивительных открытий в этой области, которые кардинально изменят жизнь человечества. Будет неловко, если вы вообще не поймете, что происходит.

Мифы о гравитации

Не только незнание, но и постоянные новые открытия в данной научной сфере порождают различные несуразицы и мифы о гравитации. Итак, несколько общепринятых заблуждений об этом уникальном явлении:

  • Искусственные спутники никогда не сойдут с орбиты Земли и будут вечно вращаться вокруг неё . Это неправда. Дело в том, что помимо земного притяжения в космосе имеются и другие различные факторы, влияющие на орбиту тел. Это и торможение атмосферы для низких орбит и гравитационные поля Луны и других планет. Скорее всего, если дать спутнику вращаться без контроля на долгое время, его орбита будет изменяться, и в конечном счете он либо улетит в космические просторы, либо упадет на поверхность ближайшего тела.
  • В космосе отсутствует гравитация. Даже на станциях, на которых космонавты пребывают в невесомости есть довольно сильная гравитация, чуть меньше, чем на Земле. Почему же тогда они не падают? Можно сказать, что сотрудники станции как бы находятся в состоянии постоянного падения, но никак упадут.
  • Объект, приблизившийся к чёрной дыре, будет разорван. Довольно известный миф. Сила притяжение черной дыры действительно увеличится при приближении к ней, но совсем не обязательно, что приливные силы окажутся настолько мощными. Скорее всего они на горизонте событий обладают конечным значением, поскольку расстояние считается от центра дыры.

Дон Деянг

Сила тяжести (или гравитация) прочно держит нас на земле и позволяет земле вращаться вокруг солнца. Благодаря этой невидимой силе дождь падает на землю, а уровень воды в океане каждый день то повышается, то снижается. Гравитация удерживает землю в сферической форме, а также не дает нашей атмосфере улетучиться в космическое пространство. Казалось бы, эта наблюдаемая каждый день сила притяжения должна быть хорошо изучена учеными. Но, нет! Во многом гравитация остается глубочайшей тайной для науки. Эта таинственная сила является замечательным примером того, насколько ограничены современные научные знания.

Что такое гравитация?

Исаак Ньютон интересовался этим вопросом еще в 1686 году и пришел к выводу, что гравитация - это сила притяжения, существующая между всеми предметами. Он понял, что та же самая сила, которая заставляет яблоко падать на землю, на своей орбите. На самом деле сила притяжения Земли служит причиной того, что во время вращения вокруг Земли Луна отклоняется каждую секунду от своего прямого пути примерно на один миллиметр (Рисунок 1). Универсальный Закон Гравитации Ньютона является одним из наибольших научных открытий всех времен.

Гравитация – «веревка», которая удерживает объекты на орбите

Рисунок 1. Иллюстрация орбиты луны, сделанная не в соответствии с масштабом. За каждую секунду луна проходит примерно 1 км. За это расстояние она отклоняется от прямого пути примерно на 1 мм – это происходит вследствие гравитационной тяги Земли (пунктирная линия). Луна постоянно как бы падает за (или вокруг) землей, как падают и планеты вокруг солнца.

Сила тяжести – одна из четырех фундаментальных сил природы (Таблица 1). Обратите внимание на то, что из четырех сил эта сила самая слабая, и все же она является доминирующей относительно крупных космических объектов. Как показал Ньютон, притягательная гравитационная сила между двумя любыми массами становится все меньше и меньше по мере того, как расстояние между ними становится все больше и больше, но она никогда полностью не достигает нуля (смотрите «Замысел гравитации»).

Поэтому каждая частица во всей вселенной фактически притягивает любую другую частицу. В отличие от сил слабого и сильного ядерного взаимодействия, сила притяжения является дальнодействующей (Таблица 1). Магнитная сила и сила электрического взаимодействия также являются дальнодействующими силами, но гравитация уникальна тем, что она и дальнодействующая и всегда притягательная, а значит, она никогда не может иссякнуть (в отличие от электромагнетизма, в котором силы могут либо притягивать, либо отталкивать).

Начиная с великого ученого-креациониста Майкла Фарадея в 1849 году, физики постоянно искали скрытую связь между силой притяжения и силой электромагнитного взаимодействия. В настоящее время ученые пытаются соединить все четыре фундаментальные силы в одно уравнение или так называемую «Теорию всего», но, безуспешно! Гравитация остается самой загадочной и наименее изученной силой.

Гравитацию невозможно каким-либо образом оградить. Каким бы ни был состав преграждающей перегородки, она не имеют никакого влияния на притяжение между двумя разделенными объектами. Это означает, что в лабораторных условиях невозможно создать антигравитационную камеру. Сила тяжести не зависит от химического состава объектов, но зависит от их массы, известной нам как вес (сила тяжести на объект равна весу этого объекта - чем больше масса, тем больше сила или вес.) Блоки, состоящие из стекла, свинца, льда или даже стирофома, и имеющие одинаковую массу, будут испытывать (и оказывать) одинаковую гравитационную силу. Эти данные были получены в ходе экспериментов, и ученые до сих пор не знают, как их можно теоретически объяснить.

Замысел в гравитации

Сила F между двумя массами m 1 и m 2 , находящимися на расстоянии r, может быть записана в виде формулы F = (G m 1 m 2)/r 2

Где G - это гравитационная постоянная, впервые измеренная Генри Кавендишем в 1798 году.1

Это уравнение показывает, что гравитация снижается по мере того, как расстояние, r, между двумя объектами становится больше, но полностью никогда не достигает нуля.

Подчиняющаяся закону обратных квадратов природа этого уравнения просто захватывает. В конце концов, нет никакой необходимой причины, почему сила притяжения должна действовать именно так. В беспорядочной, случайной и эволюционирующей вселенной такие произвольные степени, как r 1.97 или r 2.3 казались бы более вероятными. Однако точные измерения показали точную степень, по крайней мере, до пяти десятичных разрядов, 2.00000. Как сказал один исследователь, этот результат кажется «слишком уж точным» .2 Мы можем сделать вывод, что сила притяжения указывает на точный, сотворенный дизайн. На самом деле, если бы степень хоть на чуть-чуть отклонилась от 2, орбиты планет и вся вселенная стали бы нестабильными.

Ссылки и примечания

  1. Говоря техническим языком, G = 6.672 x 10 –11 Nm 2 kg –2
  2. Томпсен, Д., «Очень точно о гравитации», Science News 118(1):13, 1980.

Так что же такое в действительности гравитация? Каким образом эта сила способна действовать в таком огромном, пустом космическом пространстве? И зачем она вообще существует? Науке никогда не удавалось ответить на эти основные вопросы о законах природы. Сила притяжения не может появиться медленно путем мутаций или естественного отбора. Она действует с самого начала существования вселенной. Как и всякий другой физический закон, гравитация, несомненно, является замечательным свидетельством запланированного сотворения.

Одни ученые пытались объяснить гравитацию с помощью невидимых частиц, гравитонов, которые движутся между объектами. Другие говорили о космических струнах и гравитационных волнах. Недавно ученым с помощью специально созданной лаборатории LIGO (англ. Laser Interferometer Gravitational-Wave Observatory) удалось только увидеть эффект гравитационных волн. Но природу этих волн, каким образом физически объекты взаимодействуют друг с другом на огромных расстояниях, изменяя их фору, все же остается для всех большим вопросом. Мы просто не знаем природу возникновения силы гравитации и каким образом она удерживает стабильность всей вселенной.

Сила притяжения и Писание

Два места из Библии могут помочь нам понять природу гравитации и физическую науку в целом. Первое место, Колоссянам 1:17, объясняет, что Христос «есть прежде всего, и все Им стоит» . Греческий глагол стоит (συνισταω sunistao ) означает: сцепляться, сохраняться или удерживаться вместе. Греческое использование этого слова за пределами Библии обозначает сосуд, с содержащейся в нем водой . Слово, которое используется в книге Колоссянам, стоит в совершенном времени, что как правило, указывает на настоящее продолжающееся состояние, которое возникло из завершенного прошедшего действия. Один из используемых физических механизмов, о котором идет речь, явно сила притяжения, установленная Творцом и безошибочно поддерживаемая и сегодня. Только представьте: если бы на мгновение перестала действовать сила притяжения, несомненно, наступил бы хаос. Все небесные тела, включая землю, луну и звезды, не удерживались бы больше вместе. Все тот час разделилось бы на отдельные, маленькие части.

Второе место Писания, Евреям 1:3, заявляет, что Христос «держит все словом силы Своей». Слово держит (φερω pherō ) снова описывает поддерживание или сохранение всего, включая гравитацию. Слово держит , используемое в этом стихе, означает намного больше, чем просто удерживание веса. Оно включает контроль над всеми происходящими движениями и изменениями внутри вселенной. Это бесконечное задание выполняется через всемогущее Слово Господа, посредством которого начала существовать сама вселенная. Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной, является одним из проявлений этой потрясающей божественной заботы о вселенной.

Искажения времени и пространства и черные дыры

Общая теория относительности Эйнштейна рассматривает гравитацию не как силу, а как искривление самого пространства вблизи массивного объекта. Согласно предсказаниям, свет, который традиционно следует по прямым линиям, искривляется при прохождении по искривленному пространству. Впервые это было продемонстрировано, когда астроном сэр Артур Эддингтон обнаружил изменение кажущегося положения звезды во время полного затмения в 1919 году, считая, что лучи света изгибаются под действием силы тяжести солнца.

Общая теория относительности также предсказывает, что если тело достаточно плотное, его сила тяжести исказит пространство настолько сильно, что свет вообще не сможет через него проходить. Такое тело поглощает свет и все остальное, что захватила его сильная гравитация, и носит название Черная дыра. Такое тело можно обнаружить только по его гравитационным эффектам на другие объекты, по сильному искривлению света вокруг него и по сильной радиации, излучаемой веществом, которое на него падает.

Все вещество внутри черной дыры сжато в центре, который имеет бесконечную плотность. «Размер» дыры определяется горизонтом событий, т.е. границей, которая окружает центр черной дыры, и ничто (даже свет) не может выйти за ее пределы. Радиус дыры называется радиусом Шварцшильда, в честь немецкого астронома Карла Шварцшильда (1873–1916), и вычисляется по формуле R S = 2GM/c 2 , где c – это скорость света в вакууме. Если бы солнце попало в черную дыру, его радиус Шварцшильда составлял бы всего 3 км.

Существует надежное доказательство, что после того, как ядерное топливо массивной звезды иссякает, она больше не может противостоять коллапсу под своим собственным огромным весом и попадает в черную дыру. Считается, что черные дыры с массой в миллиарды солнц существуют в центрах галактик, включая нашу галактику, Млечный Путь. Многие ученые полагают, что суперяркие и очень отдаленные объекты под названием квазары, используют энергию, которая выделяется, когда вещество падает в черную дыру.

Согласно предсказаниям общей теории относительности, сила тяжести также искажает и время. Это также было подтверждено очень точными атомными часами, которые на уровне моря идут на несколько микросекунд медленнее, чем на территориях выше уровня моря, где сила тяжести Земли немного слабее. Вблизи горизонта событий это явление более заметно. Если наблюдать за часами астронавта, который приближается к горизонту событий, мы увидим, что часы идут медленнее. Находясь в горизонте событий, часы остановятся, но мы никогда не сможем этого увидеть. И наоборот, астронавт не заметит, что его часы идут медленнее, но он увидит, что наши часы идут быстрее и быстрее.

Основной опасностью для астронавта возле черной дыры были бы приливные силы, вызванные тем, что сила тяжести сильнее на тех частях тела, которые находятся ближе к черной дыре, чем на частях дальше от нее. По своей мощи приливные силы возле черной дыры, имеющей массу звезды, сильнее любого урагана и запросто разрывают на мелкие кусочки все, что им попадается. Однако, тогда как гравитационное притяжение уменьшается с квадратом расстояния (1/r 2), приливно-отливное явление уменьшается с кубом расстояния (1/r 3). Поэтому в отличие от принятого мнения, гравитационная сила (включая приливную силу) на горизонтах событий больших черных дыр слабее, чем на маленьких черных дырах. Так что приливные силы на горизонте событий черной дыры в наблюдаемом космосе, были бы менее заметны, чем самый мягкий ветерок.

Растяжение времени под действием силы тяжести вблизи горизонта событий является основой новой космологической модели физика-креациониста, доктора Рассела Хамфриса, о которой он рассказывает в своей книге «Свет звезд и время». Эта модель, возможно, помогает решить проблему того, как мы можем видеть свет отдаленных звезд в молодой вселенной. К тому же на сегодня она является научной альтернативой небиблейской , которая основывается на философских предположениях, выходящих за рамки науки.

Примечание

Гравитация, «таинственная сила», которая и через четыреста лет исследований остается плохо изученной…

Исаак Ньютон (1642–1727)

Фотография: Wikipedia.org

Исаак Ньютон (1642–1727)

Исаак Ньютон опубликовал свои открытия о гравитации и движении небесных тел в 1687 году, в своей известной работе «Математические начала ». Некоторые читатели быстро сделали вывод, что вселенная Ньютона не оставила места для Бога, так как все теперь можно объяснить с помощью уравнений. Но Ньютон совсем так не думал, о чем он и сказал во втором издании этой известной работы:

«Наша наиболее прекрасная солнечная система, планеты и кометы могут быть результатом только плана и господства разумного и сильного существа».

Исаак Ньютон был не только ученым. Помимо науки он почти всю свою жизнь посвятил исследованию Библии. Его любимыми библейскими книгами были: книга Даниила и книга Откровение, в которых описываются Божьи планы на будущее. На самом деле Ньютон написал больше теологических работ, чем научных.

Ньютон уважительно относился к другим ученым, таким как Галилео Галилей. Кстати Ньютон родился в то же год, когда умер Галилей, в 1642 году. Ньютон писал в своем письме: «Если я и видел дальше других, то потому, что стоял на плечах гигантов». Незадолго до смерти, наверное, размышляя о тайне силы тяжести, Ньютон скромно писал: «Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пестрый, чем другие, или красивую ракушку, в то время как передо мной расстилается огромный океан неисследованной истины».

Ньютон похоронен в Вестминстерском аббатстве. Латинская надпись на его могиле заканчивается словами: «Пусть смертные радуются, что среди них жило такое украшение человеческого рода» .

Между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

June 14th, 2015 , 12:24 pm

Все мы проходили закон всемирного тяготения в школе. Но что мы на самом деле знаем о гравитации, помимо информации, вложенной в наши головы школьными учителями? Давайте обновим наши познания...

Факт первый: Ньютон не открывал закона всемирного тяготения

Всем известна знаменитая притча о яблоке, которое упало на голову Ньютону. Но дело в том, что Ньютон не открывал закона всемирного тяготения, так как этот закон просто напросто отсутствует в его книге "Математические начала натуральной философии". В этом труде нет ни формулы, ни формулировки, в чём каждый желающий может убедиться сам. Более того, первое упоминание о гравитационной постоянной появляется только в 19-м веке и соответственно, формула, не могла появиться раньше. К слову сказать, коэффициент G, уменьшающий результат вычислений в 600 миллиардов раз не имеет никакого физического смысла, и введён для сокрытия противоречий.

Факт второй: фальсификая эксперимента гравитационного притяжения

Считается, что Кавендиш первый продемонстрировал гравитационное притяжение у лабораторных болваночек, использовав крутильные весы - горизонтальное коромысло с грузиками на концах, подвешенных на тонкой струне. Коромысло могло поворачиваться на тонкой проволоке. Согласно официальной версии, Кавендиш приблизил к грузикам коромысла пару болванок по 158 кг с противоположных сторон и коромысло повернулось на небольшой угол. Однако методика опыта была некорректной и результаты были сфальсифицированы, что убедительно доказано физиком Андреем Альбертовичем Гришаевым. Кавендиш долго переделывал и настраивал установку, чтобы результаты подходили под высказанную Ньютоном среднюю плотность земли . Методика самого опыта предусматривала движение болванок несколько раз, а причиной поворота коромысла служили микровибрации от движения болванок, которые передавались на подвес.

Это подтверждается тем, что такая простейшая установка 18 века в учебных целях должна была бы стоять если не в каждой школе, то хотя бы на физических факультетах ВУЗОВ, чтобы на практике показывать студентам результат действия закона Всемирного тяготения. Однако установка Кавендиша не используется в учебных программах, и школьники, и студенты верят на слово, что две болванки притягивают друг друга.

Факт третий: Закон всемирного тяготения не работает во время солнечного затмения

Если подставить в формулу закона всемирного тяготения справочные данные по земле, луне и солнцу, то в момент, когда Луна пролетает между Землёй и Солнцем, например, в момент солнечного затмения, сила притяжения между Солнцем и Луной более чем в 2 раза выше, чем между Землёй и Луной!

Согласно формуле Луна должна была бы уйти с орбиты земли и начать вращаться вокруг солнца.

Гравитационная постоянная - 6,6725×10−11 м³/(кг·с²).
Масса Луны - 7,3477×1022 кг.
Масса Солнца - 1,9891×1030 кг.
Масса Земли - 5,9737×1024 кг.
Расстояние между Землёй и Луной = 380 000 000 м.
Расстояние между Луной и Солнцем = 149 000 000 000 м.

Земля и Луна:
6,6725×10-11 х 7,3477×1022 х 5,9737×1024 / 3800000002 = 2,028×1020 H
Луна и Солнце:
6,6725×10-11 х 7,3477·1022 х 1,9891·1030 / 1490000000002 = 4,39×1020 H

2,028×1020 H << 4,39×1020 H
Сила притяжения между Землёй и Луной << Сила притяжения между Луной и Солнцем

Эти вычисления можно критиковать тем, что луна - искусственное полое тело и справочная плотность этого небесного тела скорее всего определена не правильно.

Действительно, экспериментальные свидетельства говорят о том, что Луна представляет из себя не сплошное тело, а тонкостенную оболочку. Авторитетный журнал Сайенс описывает результаты работы сейсмодатчиков после удара о поверхность Луны третьей ступени ракеты, разгонявшей корабль «Аполлон-13»: «сейсмозвон детектировался в течение более четырёх часов. На Земле, при ударе ракеты на эквивалентном удалении, сигнал длился бы всего несколько минут».

Сейсмические колебания, которые затухают так медленно, типичны для полого резонатора, а не для сплошного тела.
Но Луна помимо прочего не проявляет своих притягивающих свойств по отношению к Земле - пара Земля-Луна движется не вокруг общего центра масс, как это было бы по закону всемирного тяготения, и эллипсоидная орбита Земли вопреки этому закону не становится зигзагообразной.

Более того, параметры орбиты самой Луны не остаются постоянными, орбита по научной терминологии "эволюционирует", причём делает это вопреки закону всемирного тяготения.

Факт четвёртый: абсурдность теории приливов и отливов

Как же так, возразят некоторые, ведь даже школьники знают про океанские приливы на Земле, которые происходят из-за притяжения воды к Солнцу и Луне.

По теории тяготение Луны формирует приливной эллипсоид в океане, с двумя приливными горбами, которые из-за суточного вращения перемещаются по поверхности Земли.

Однако практика показывает абсурдность этих теорий. Ведь согласно ним приливный горб высотой 1 метр за 6 часов должен через пролив Дрейка переместиться из Тихого океана в Атлантический. Поскольку вода несжимаема, то масса воды подняла бы уровень на высоту около 10 метров, чего не происходит на практике. На практике приливные явления происходят автономно в областях 1000-2000 км.

Ещё Лапласа изумлял парадокс: почему в морских портах Франции полная вода наступает последовательно, хотя по концепции приливного эллипсоида она должна наступать там одновременно.

Факт пятый: теория тяготения масс не работает

Принцип измерений гравитации прост - гравиметры измеряют вертикальные компоненты, а отклонение отвеса показывает горизонтальные компоненты.

Первая попытка проверки теории тяготения масс была предпринята англичанами в середине 18 века на берегу Индийского океана, где, с одной стороны находится высочайшая в мире каменная гряда Гималаев, а с другой - чаша океана, заполненная куда менее массивной водой. Но, увы, отвес в сторону Гималаев не отклоняется! Более того, сверхчувствительные приборы - гравиметры - не обнаруживают разницы в тяжести пробного тела на одинаковой высоте как над массивными горами, так и над менее плотными морями километровой глубины.

Чтобы спасти прижившуюся теорию, учёные придумали для неё подпорку: мол причиной тому «изостазия» - под морями располагаются более плотные породы, а под горами - рыхлые, причём плотность их точь-в-точь такая, чтоб подогнать всё под нужное значение.

Также опытным путём было установлено, что гравиметры в глубоких шахтах показывают, сила тяжести, не уменьшающуюся с глубиной. Она продолжает расти, будучи зависимой только от квадрата расстояния до центра земли.

Факт шестой: тяготение порождается не веществом и не массой

Согласно формуле закона всемирного тяготения, Два массы, м1 и м2, размерами которых можно пренебречь по сравнению с расстояниями между ними, якобы притягиваются друг к другу силой, прямо пропорциональной произведению этим масс и обратно пропорционально квадрату расстояния между ними. Однако, фактически, неизвестно ни одного доказательства того, что вещество обладает гравитационным притягивающим действием. Практика показывает, что тяготение порождается не веществом и не массами, оно независимо от них и массивные тела лишь подчиняются тяготению.

Независимость тяготения от вещества подтверждается тем, что за редчайшим исключением, у малых тел солнечной системы гравитационная притягивающая способность отсутствует полностью . За исключением Луны у более чем шести десятков спутников планет признаков собственного тяготения не наблюдается. Это доказано как косвенными, так и прямыми измерениями, например, с 2004 года зонд Кассени в окрестностях Сатурна время от времени пролетает рядом с его спутниками, однако изменений скорости зонда не зафиксировано. С помощью того же Кассени был обнаружен гейзер на Энцеладе — шестом по размеру спутник Сатурна.

Какие физические процессы должны происходить на космическом куске льда, чтобы струи пара улетали в космос?
По той же причине у Титана, крупнейшего спутника Сатурна, наблюдается газовых хвост как следствие стока атмосферы.

Не найдено предсказанных теорией спутников у астероидов, несмотря на их огромное количество. А во всех сообщениях о двойных, или парных астероидах, которые якобы вращаются вокруг общего центра масс, свидетельств об обращении этих пар не было. Компаньоны случайно оказывались рядом, двигаясь по квазисинхронным орбитам вокруг солнца.

Предпринятые попытки вывести на орбиту астероидов искусственные спутники окончились крахом. В качестве примеров можно привести зонд NEAR, который подгоняли к астероиду Эрос американцы, или зонд ХАЯБУСА, который японцы отправили к астероиду Итокава.

Факт седьмой: астероиды Сатурна не подчиняются закону всемирного тяготения

В своё время Лагранж, пытаясь решить задачу трёх тел, получил устойчивое решения для частного случая. Он показал, что третье тело может двигаться по орбите второго, всё время находясь в одной из двух точек, одна из которых опережает второе тело на 60°, а вторая на столько же отстаёт.

Однако две группы компаньонов-астероидов, найденные позади и впереди на орбите Сатурна, и которые астрономы на радостях назвали Троянцами, вышли из прогнозируемых областей, и подтверждение закона всемирного тяготения обернулось проколом.

Факт восьмой: противоречие с общей теорией относительности

По современным представлениям скорость света конечна, в результате удалённые объекты мы видим не там, где они расположены в данный момент, а в той точке, откуда стартовал увиденный нами луч света. Но с какой скоростью распространяется тяготение?

Проанализировав данные, накопленные ещё к тому времени, Лаплас установил, что «гравитация» распространяется быстрее света, как минимум, на семь порядков! Современные измерения по приёму импульсов пульсаров отодвинули скорость распространения гравитации ещё дальше - как минимум, на 10 порядков быстрей скорости света. Таким образом, экспериментальные исследования входят в противоречие с общей теорией относительности, на которую до сих пор опирается официальная наука, несмотря на её полную несостоятельность .

Факт девятый: аномалии гравитации

Существуют природные аномалии гравитации, которые также не находят никакого внятного объяснения у официальной науки. Вот несколько примеров:

Факт десятый: исследования вибрационной природы антигравитации

Существует большое количество альтернативных исследований с впечатляющими результатами в области антигравитации, которые в корне опровергают теоретические выкладки официальной науки.

Некоторые исследователи анализируют вибрационную природу антигравитации. Этот эффект наглядно представлен в современном опыте, где капли за счёт акустической левитации висят в воздухе. Здесь мы видим, как с помощью звука определённой частоты удаётся уверенно удерживать капли жидкости в воздухе…

А вот эффект на первый взгляд объясняется принципом гироскопа, однако даже такой простой опыт по большей части противоречит гравитации в её современном понимании.

Мало кто знает, что Виктор Степанович Гребенников, сибирский энтомолог, занимавшийся изучением эффекта полостных структур у насекомых, в книге "Мой мир" описывал явления антигравитации у насекомых. Учёным давно известно, что, массивные насекомые, например майский жук, летают скорее вопреки законам гравитации, а не благодаря им.

Более того, на основе своих исследований Гребенников создал антигравитационную платформу.

Виктор Степанович умер при довольно странных обстоятельствах и его наработки частично были утеряны, однако некоторая часть прототипа анти-гравитационной платформы сохранилась и её можно увидеть в музее Гребенникова в Новосибирске .

Ещё одно практическое применение антигравитации можно наблюдать в городе Хоумстед во Флориде, где находится странная структура из коралловых монолитных глыб, которую в народе прозвали Коралловым замком. Он построен выходцем из Латвии — Эдвардом Лидскалнином в первой половине 20го века. У этого мужчины худощавого телосложения не было никаких инструментов, не было даже машины и вообще никакой техники.

Он совсем не использовался электричеством, также по причине его отсутствия, и тем не менее каким-то образом спускался к океану, где вытесывал многотонные каменные блоки и как-то доставлял их на свой участок, выкладывая с идеальной точностью.

После смерти Эда ученые принялись тщательно изучать его творение. Ради эксперимента был пригнан мощнейший бульдозер, и предпринята попытка сдвинуть с места одну из 30-тонных глыб кораллового замка. Бульдозер ревел, буксовал, но так и не сдвинул огромный камень.

Внутри замка был найден странный прибор, который ученые назвали генератором постоянного тока. Это была массивная конструкция с множеством металлических деталей. По внешней стороне устройства были встроены 240 постоянных полосовых магнитов. Но как на самом деле Эдвард Лидскалнин заставлял двигаться многотонные блоки, до сих пор остаётся загадкой .

Известны исследования Джона Сёрла, в руках которого оживали, вращались и вырабатывали энергию необычные генераторы; диски диаметром от полуметра до 10 метров поднимались в воздух и совершали управляемые полеты из Лондона в Корнуолл и обратно.

Эксперименты профессора повторили в России, США и на Тайване. В России, например, в 1999 году под № 99122275/09 была зарегистрирована заявка на патент «устройства для выработки механической энергии». Владимир Витальевич Рощин и Сергей Михайлович Годин, по сути, воспроизвели SEG (Searl Effect Generator — генератор на Сёрл-эффекте) и провели ряд исследований с ним. Итогом стала констатация: можно получить без затрат 7 КВт электроэнергии; вращающийся генератор терял в весе до 40%.

Оборудование первой лаборатории Сёрла было вывезено в неизвестном направлении, пока сам он был в тюрьме. Установка Година и Рощина просто пропала; все публикации о ней, за исключением заявки на изобретение, исчезли .

Известен также Эффект Хатчисона, названный в честь канадского инженера-изобретателя. Эффект проявляется в левитации тяжелых объектов, сплаве разнородных материалов (например металл+дерево), аномальном разогревании металлов при отсутствии вблизи них горящих веществ. Вот видеозапись этих эффектов:

Чем бы не была гравитация на самом деле, следует признать, что официальная наука совершенно не способна внятно объяснить природу этого явления .

Ярослав Яргин