Какой самый распространенный газ в атмосфере марса. Общие сведения об атмосфере марса. Диссипация планетных атмосфер

Характеристики: Атмосфера Марса более разряжена, чем воздушная оболочка Земли. По составу она напоминает атмосферу Венеры и на 95% состоит из углекислого газа. Около 4% приходится на долю азота и аргона. Кислорода и водяного пара в марсианской атмосфере меньше 1% (Точный состав см ). Среднее давление атмосферы на уровне поверхности около 6,1 мбар. Это в 15000 раз меньше, чем на Венере, и в 160 раз меньше, чем у поверхности Земли. В самых глубоких впадинах давление достигает 10 мбар.
Средняя температура на Марсе значительно ниже чем на Земле, - около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С - вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать до -125° С. При зимней температуре даже углекислота замерзает, превращаясь в сухой лед. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способна долго удерживать тепло. Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922 г. дали среднюю температуру поверхности Марса -28°С, Э. Петтит и С. Никольсон получили в 1924 г. -13°С. Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: -43°С. Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до +27°С, но уже к утру до -50°С.

На Марсе существуют и температурные оазисы, в районах "озера" Феникс (плато Солнца) и земли Ноя перепад температур составляет от -53° С до +22° С летом и от -103° С до -43° С зимой. Итак, Марс - весьма холодный мир, однако климат там ненамного суровее, чем в Антарктиде. Когда первые фотографии с поверхности Марса, сделанные “Викингом”, были переданы на Землю, ученые были очень сильно удивлены, увидев, что Марсианское небо не черное, как это предполагалось, а розовое. Оказалось что пыль, висящая в воздухе, поглощает 40% поступающего солнечного цвета, создавая цветной эффект.
Пылевые бури: Одним из проявлений перепада температур являются ветры. Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/с. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Чаще всего они возникают вблизи полярных шапок. Глобальная пылевая буря на Марсе помешала фотографированию поверхности с борта зонда "Маринер-9". Она бушевала с сентября 1971 по январь 1972 г., подняв в атмосферу на высоте более 10 км около миллиарда тонн пыли. Пылевые бури чаще всего бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий. Продолжительность бурь может достигать 50-100 суток. (Раньше меняющийся цвет поверхности объяснялся ростом марсианских растений).
Пылевые дьяволы: Пылевые смерчи - еще один пример процессов на Марсе, связанных с температурой. Такие смерчи очень частые проявления на Марсе. Они поднимают в атмосферу пыль и возникают из-за разниц температур. Причина: днем поверхность Марса достаточно нагревается (иногда и до положительных температур), но на высоте до 2х метров от поверхности атмосфера остается такой же холодной. Такой перепад вызывает нестабильность, поднимая в воздух пыль - образуются пылевые дьяволы.
Водяной пар: Водяного пара в марсианской атмосфере совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными. В телескоп видны только самые большие из них, но наблюдения с космических кораблей показали, что на Марсе встречаются облака самых разнообразных форм и видов: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах, защищенных от ветра). Над низинами - каньонами, долинами - и на дне кратеров в холодное время суток часто стоят туманы. Зимой 1979 г. в районе посадки "Викинга-2" выпал тонкий слой снега, который пролежал несколько месяцев.
Времена года: На сегодняшний момент известно, что из всех планет Солнечной системы Марс наиболее подобен Земле. Он сформировался приблизительно 4,5 млрд. лет назад. Ось вращения Марса наклонена к его орбитальной плоскости приблизительно на 23,9°, что сравнимо с наклоном земной оси, составляющим 23,4°, а потому там, как и на Земле, происходит смена сезонов. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния до экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном - когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. И продолжительность каждого из четырех марсианских сезонов разнится в зависимости от его удаления от Солнца. А потому в марсианском северном полушарии зима коротка и относительно «умеренна», а лето длинное, но прохладное. В южном же наоборот - лето короткое и относительно теплое, а зима длинная и холодная.
С наступлением весны полярная шапка начинает "съеживаться", оставляя за собой постепенно исчезающие островки льда. В то же время от полюсов к экватору распространяется так называемая волна потемнения. Современные теории объясняют ее тем, что весенние ветры переносят вдоль меридианов большие массы грунта с различными отражательными свойствами.

По-видимому, ни одна из шапок не исчезает полностью. До начала исследований Марса при помощи межпланетных зондов предполагалось, что его полярные области покрыты застывшей водой. Более точные современные наземные и космические измерения обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы.
Марсианский день, называемый сол, составляет 24,6 часа, а его год - 669 сол.
Влияние климата: Первые попытки разыскать в марсианской почве прямые свидетельства наличия основы для жизни - жидкой воды и таких элементов, как азот и сера, не принесли успеха. Экзобиологический эксперимент, проведенный на Марсе в 1976 году после посадки на его поверхность американской межпланетной станции «Викинг», несшей на своем борту автоматическую биологическую лабораторию (АБЛ), не принес доказательств существования жизни. Отсутствие органических молекул на изученной поверхности могло быть вызвано интенсивным ультрафиолетовым излучением Солнца, так как у Марса нет защитного озонового слоя, и окисляющим составом почвы. Поэтому верхний слой марсианской поверхности (толщиной около нескольких сантиметров) - бесплоден, хотя существует предположение, что в более глубоких, подповерхностных, слоях сохранились условия, которые были миллиарды лет назад. Определенным подтверждением этих предположений стали недавно обнаруженные на Земле на глубине 200 м микроорганизмы - метаногены, питающиеся водородом и дышащие углекислым газом. Специально же проведенный учеными эксперимент доказал, что подобные микроорганизмы могли бы выжить и в суровых марсианских условиях. Гипотеза о более теплом древнем Марсе с открытыми водоемами - реками, озерами, а может, и морями, а также с более плотной атмосферой - обсуждается уже более двух десятилетий, так как «обживать» столь негостеприимную планету, да еще при отсутствии воды, было бы очень сложно. Для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была бы очень сильно отличаться от нынешней.


Переменчивый марсианский климат

Современный Марс - очень негостеприимный мир. Разреженная атмосфера, к тому же непригодная для дыхания, страшные пылевые бури, отсутствие воды и резкие перепады температуры в течение суток и года - всё это свидетельствует о том, что заселить Марс будет не так-то просто. Но ведь когда-то на нём текли реки. Значит ли это, что в прошлом на Марсе был другой климат?
Есть несколько фактов в поддержку этого утверждения. Вопервых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Во-вторых, существуют многочисленные следы проточной воды, что также невозможно при нынешнем состоянии атмосферы. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд пет назад. Приблизительно такой же возраст имеют и многие промоины.
К сожалению, сейчас не удаётся объяснить, что именно привело к таким серьёзным изменениям климата. Ведь для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была очень сильно отличаться от нынешней. Возможно, причина этого кроется в обильном выделении летучих элементов из недр планеты в первый миллиард лет её жизни или в изменении характера движения Марса. Из-за большого эксцентриситета и близости к планетам - гигантам орбита Марса, а также наклон оси вращения планеты могут испытывать сильные колебания, как короткопериодические, так и достаточно длительные. Эти изменения вызывают уменьшение или увеличение количества солнечной энергии, поглощаемой поверхностью Марса. В прошлом климат мог испытать сильное потепление, вследствие которого плотность атмосферы повысилась за счёт испарения полярных шапок и таяния подземных льдов.
Предположения о переменчивости марсианского климата подтверждаются недавними наблюдениями на Хаббловском космическом телескопе. Он позволил производить с околоземной орбиты очень точные измерения характеристик атмосферы Марса и даже предсказывать марсианскую погоду. Результаты оказались довольно неожиданными. Климат планеты сильно изменился со времени посадок спускаемых аппаратов «Викинг» (1976 г.): он стал суше и холоднее. Возможно, это связано с сильными бурями, которые в начале 70-х гг. подняли в атмосферу огромное количество мельчайших пылинок. Эта пыль препятствовала остыванию Марса и испарению водяного пара в космическое пространство, но потом осела, и планета вернулась к своему обычному состоянию.

терраформация

Колонизация предполагает заселение Марса на постоянной основе, когда люди уже живут не вахтами, а длительное время, имеют постоянное занятие и создают семьи. Гипотетически осуществить колонизацию можно даже уже при достигнутом уровне развития техники и технологии. Хотя это и баснословно дорогое предприятие. Для колонизации нужна не только техническая возможность, но цель.

Очевидно, что на Земле всяко найдется хоть сотня энтузиастов готовых жить в экстремальных условиях на далекой планете. Но долго такая колония не просуществует. Для действительно серьезной колонизации нужна цель, ради которой люди будут терпеть неудобства и лишения на очень не гостеприимной планете или очень серьезная причина.

Пока можно только предполагать, что может стать такой целью. Жадность и алчность конкистадоров, стремление все перестроить и освоить, политический интерес, вынужденная мера, бегство от реалий и проблем земной цивилизации – список большой и не полный.

Чисто с практической точки зрения такой целью может стать разработка полезных ископаемых. Марс, очевидно, имел иную геологическую историю, чем Земля. Количество осадочных пород на Марсе намного меньше, чем на земле. Отсутствие в больших количествах свободного кислорода позволяет ожидать на Марсе месторождений самородочных металлов. Было бы замечательно, если бы на Марсе нашлись бы редко встречаются на Земле (лютеций, европий, самарий, и др.). Очень важное значение для будущей колонизации будет иметь открытие богатых месторождений урана – главного сырья внеземной энергетики.

Другой причиной для колонизации Марса могут стать неблагоприятные тенденции в развитии земной цивилизации, которые в отдаленном будущем стимулируют поиск альтернативных Земле мест проживания людей.

Иначе говоря, уже поверхностный анализ указывает на то, что для колонизации Марса имеются достаточно веские причины. Однако будущие потребности развития человеческой цивилизации определят и степень колонизации Марса. Если потребность в колонизации Марса будут минимальной, то все может ограничиться изучением Марса и строительством временных научных баз. Три большой потребности колонизация может стать столь масштабной, что на повестку дня далеких потомков встанет вопрос о терраформации Марса с целью сделать проживание людей на этой планете более комфортным и безопасным.

Здесь может возникнуть ряд вопросов. А возникнет ли в принципе необходимость в терраформации Марса? Может там, на Марсе нет ничего интересного, и особой потребности для переселения туда большого количества людей никогда не будет? Тогда можно будет обойтись небольшими колониями. Ведь кроме Марса есть и другие планеты, и спутники, куда человечество может направить свои усилия. Может достаточно будет построить на Марсе пару-тройку баз с искусственной средой обитания и не затеваться с перестройкой всей планеты?

Не на все поставленные вопросы сейчас можно дать исчерпывающие ответы. Марс выгодно отличается от всех других планет и спутников двумя важными обстоятельствами.

1. Марс находится рядом с Землей, ближе только Луна. При старте с орбиты Земли для достижения Луны требуется сообщить кораблю приращение скорости Δ V = 3.1 км/с, а для достижения Марса Δ V = 3.6 км/с. Как мы видим с энергетической точки зрения разницы особой нет. Поэтому стоимость килограмма полезного груза доставляемая в район Марса и в район Луны хоть и отличается, но незначительно. Есть только разница во времени перелета, что для материальных ценностей не принципиально.

2. В отличие от Луны и многих спутников и планет на Марсе в принципе можно создать биосферу подобную земной даже при нынешнем уровне развития техники, тогда как для преобразования других небесных объектов потребуются на порядок большие усилия. Например, на Луне создание полноценной атмосферы в масштабах всего спутника невозможно даже в ближайшем будущем в виду отсутствия газообразных веществ. На Марсе такая атмосфера уже есть и требуется только изменить её параметры, есть и на полюсах месторождения замороженных газов, которые могут пополнить атмосферу.

Поэтому наиболее реально, что именно на Марсе в отдаленном будущем наши потомки получат для проживания еще одну достаточно приспособленную для жизни обширную территорию на поверхности планеты.

Площадь поверхности Марса 144 млн. км 2 практически в точности равна площади суши на Земле! Даже исключив приполярные и высокогорные области Марса, и учтя, что часть суши в будущем займут марсианские моря, все равно площадь доступная для освоения на Марсе будет сравнима с такими континентами как Евразия или обе Америки с Австралией. Для справки Америка 42 млн. км 2 , Евразия 64 млн. км 2 . Даже если пригодной для освоения будет только половина площади поверхности Марса то это составит не менее 72 млн. км 2 .

Иначе говоря, есть за что бороться. Но прежде надо ответить на вопрос. А каковы физические условия на Марсе и возможна ли вообще терраформация Марса?

2. Физические условия на Марсе

Марс планета, где большую часть времени суток температуры находятся ниже нуля градусов. Жидкой воды нет, в атмосферы водяного пара мало. Иначе Марс очень сухая и холодная планета с разряженной атмосферой на 95% состоящей из углекислого газа. Кроме СО 2 в атмосфере Марса есть азот (2.5%) и аргон (1.5%).Кислорода - 0.1% водяного пара - 0.2%. На полюсах сконцентрированы большие количества льда. Вот только до конца не известно, сколько там водяного и сколько сухого люда. Предполагается наличие вечной мерзлоты. Таким образом, запасы воды на Марсе есть, есть и замерзшая углекислота, которая может наполнить атмосферу и увеличить давление.

Давление соответствующее условной нулевой высоте на поверхности Марса принято 6 мбар (600 Па) или 4.6 мм. рт.ст . Максимальное давление в глубоких депрессиях видимо порядка 10 мбар .

Условия на планете Земля определяющим образом связаны с наличием огромного океана жидкой воды. Температура на Земле определяются не только количеством тепла, поступающим от Солнца и парниковым эффектом, но в значительной степени определяются системой терморегулирования гидросферы и атмосферы. Испарение и конденсация воды выравнивает температуру и в целом поддерживает условия на планете в определенном диапазоне температур. Изменение количества пара в атмосфере в свою очередь управляет парниковым эффектом, но пар собирается в облака, которые экранируют поток солнечной энергии. В общем регулировании участвуют и обширные площади заснеженных пространств зимой. В итоге на Земле действует сложная саморегулирующаяся система.

На Марсе из-за более слабого притяжения уже давно произошла потеря большей части первоначальной атмосферы. Водород, гелий и по большей части азот были потеряны в результате процесса диссипации (убегания) молекул. Часть воды разложилась под действием ультрафиолетового излучения и была также потеряна. Поскольку водород, образовавшийся от распада молекул воды, улетучился в мировое пространство, а кислород был связан пылью и породами, в частности содержащими железо на поверхности планеты. Из-за этого Марс и имеет кроваво красную окраску. В результате потери первичной атмосферы и вымораживания части атмосферных газов атмосфера стала разряженной, парниковый эффект ослаб, усилилось переохлаждение планеты. В итоге часть СО 2 и вся вода вымерзли, образовав вечную мерзлоту и полярные шапки.

Впрочем, на Марсе имеют место сезонные явления, когда частично происходит таяние мерзлоты и полярных шапок. Регулирование давления и плотности атмосферы значительно более слабо выражено, чем на Земле и носит ярко выраженный сезонный характер, что связано с таянием полярных шапок. Еще один механизм, управляющий условиями на Марсе - мощные пыльные бури. Во время пыльной бури происходит переохлаждение поверхности планеты, но при этом несколько нагревается атмосфера.

Температура на Марсе меняется так. Вблизи полудня на экваторе темные предметы нагреваются до +20º С -+27º С , тогда как воздух остается холодным. Утром и вечером температура находится ниже нуля, а ночью под утро может достигнуть -100º С . Контраст температур на экваторе достигает 130º С . В средних широтах температура ночью примерно такая же, как и ночью на экваторе, но днем предметы нагреваются только до 0º С . Поэтому контраст температуры меньше. На полюсе температура может упасть уже до -123º С.

Однако такой климат, если не учитывать ночного понижения температуры ниже -100С близок к тому, что мы наблюдаем в Антарктиде. Самая низкая температура в Антарктиде зафиксирована на станции «Восток» и составила -89.2º С , а средняя температура на Полюсе недоступности в Антарктиде составляет -57.8º С , что близко к средней температуре на Марсе (-53º С ). Поскольку люди живут и работают в Антарктиде, то низкая температура не является препятствием для колонизации Марса. Главная причина как указано выше - низкое давление.

Поскольку плюсовые температуры на Марсе достигаются только вблизи полудня и в районе экватора, то существование в глубоких впадинах жидкой воды, скорее из области фантастики. Поскольку ночью она неизбежно замерзнет. Оттаять за короткий промежуток времени днем сможет только тонкий слой. Однако вследствие испарения воды и сублимации льда эта вода перейдет в пар и может оказаться, в конце концов, на полюсе планеты. Явления подобные гейзерам на Земле на Марсе видимо, не возможны, так как толщина коры порядка 100 км (на Земле 3-10 раз меньше), а наличие больших подземных водоемов, которые могли бы питать гейзеры пока можно предположить только гипотетически.

Можно допустить, что в глубоких впадинах коры, где давление выше тройной точки воды может выпадать некоторое количество влаги в виде росы. На Марсе существуют и облака, хотя это достаточно редкое явление, если сравнивать с Землей. В телескоп видны только самые большие облака, но наблюдения с космических аппаратов показали, что на Марсе встречаются облака самых разнообразных форм и видов: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах, защищенных от ветра). Над низинами - каньонами, долинами - и на дне кратеров в холодное время суток часто стоят туманы. Из-за низкого давления и температуры на Марсе водяной пар находится вблизи состояния насыщения. Так при температуре 0º С давление насыщенного водяного пара как раз 613 Па, что соответствует давлению на Марсе. Зимой 1979 г. в районе посадки "Викинга-2" выпал тонкий слой снега, который пролежал несколько месяцев.

В зимнее время полярные шапки занимают значительную площадь полушария планеты. Граница северной полярной шапки может удалиться от полюса на треть расстояния до экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном - когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. И продолжительность каждого из четырех марсианских сезонов разнится в зависимости от его удаления от Солнца. А потому в марсианском северном полушарии зима коротка и относительно «умеренна», а лето длинное, но прохладное. В южном полушарии наоборот - лето короткое и относительно теплое, а зима длинная и холодная

Более точные современные наземные и космические измерения обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы.

Видимо в далекие времена давление на Марсе было выше, и вода могла существовать в виде отрытых водоемов, может даже океанов. Но по мере потери атмосферы парниковый эффект слабел и средние температуры на Марсе сдвинулась ниже нуля градусов. Тогда стал необратимым процесс вымораживания воды, которая концентрировалась в гигантских холодильниках на полюсах планеты.

3. Марсианские колонии

Можно предположить, что на Марсе в разное время будут существовать колонии двух типов. Первичные колонии до терраформации Марса и вторичные колонии, которые заселят Марс уже в ходе или после терраформации .

Колонии первого типа, очевидно, будут жить под поверхностью Марса или построят из местных материалов сооружения, защищающие их от воздействия внешней среды. Работа вне искусственных сооружений будет возможна либо в скафандрах или дистанционно из герметичной кабины самоходных или стационарных механизмов. Продукты питания придется получать из оранжереи с искусственной атмосферой. Колония этого типа живет только в пределах искусственно созданной среды обитания. Поверхность планеты используется только для добычи полезных ископаемых или иной промышленной или научной деятельности. Важное место в деятельности такой колонии займет производство продуктов, кислорода, топлива, добыча полезных ископаемых, строительство и обустройство подземных сооружений, геологическая разведка.

Население колонии первого типа будет колебаться от нескольких десятков людей до нескольких сотен человек. Количество самих колоний на Марсе будет определяться производственной потребностью. Фактически колонии такого типа будут самодостаточными образованиями, живущими квази изолированно от остальных марсианских колоний.

Для обеспечения колоний на Земле появится новый тип технологии и производства - разработка и создания промышленных и технологических циклов замкнутого типа ориентированных на использование марсианских ресурсов. По некоторым соображениям часть колоний в первую очередь разместятся в низинных частях Марса вблизи экваториальной зоны. Разработка полезных ископаемых будет вестись, непосредственно рядом с колонией. В последствии эти низины могут стать марсианскими морями. Однако на дне морей все полезные ископаемые к тому времени уже будут добыты. Правда в отдаленной перспективе придется оставить и ранее построенные колонии. Учитывая, что до того момента, когда произойдет заполнение низин водой, может пройти не одна сотня или даже тысяча лет, то это обстоятельство вряд ли будет играть какую-то роль.

После этапа первичной разведки и заселения Марса можно будет заняться его терраформированием . Это длительный этап и все это время на Марсе будут существовать колонии первого типа.

4. Перспективы терраформации

Если осуществить первый этап терраформации , то на Марсе, могут появиться колонии уже второго типа. Давление атмосферы и температура на поверхности станет выше, а это качественно изменит окружающий мир. В небе появятся более густые облака, иногда сможет идти дождь, чаще будет идти снег, появятся временные водоемы, ручьи, реки и родники.

Как только особые растения смогут расти во внешней среде, на Марсе будут активно высаживать специфические «марсианские» растения. В начале это могут быть специфические мхи или лишайники прирабатывающие СО 2 из атмосферы под действие солнечного света в кислород и органические вещества, активно используя в этом процессе минералы марсианского грунта. Со временем появятся и более сложные виды организмов, которые заселят целые пространства подобно альпийским лугам или тундровым полям.

На Земле для сложных растений нужны насекомые, значит могут появятся и особые формы марсианских насекомых. Плотность будущей марсианской атмосферы может позволить таким насекомым даже летать. Возможно и появление искусственно созданных методами генной инженерии животных способных жить в атмосфере Марса. Все это многообразие биологического мира необходимо для создания полноценной саморегулирующейся биосферы.

Постепенно начнет меняться состав атмосферы. Концентрация углекислоты будет уменьшаться, но появится больше свободного кислорода. Возрастет средняя температура и давление. На поверхности Марса появятся открытые водоемы, возможно моря и океаны. Люди смогут работать на поверхности без герметичных скафандров, однако им придется подобно аквалангистам использовать специальные дыхательные приборы. В это период на Марсе будет создана биосфера в масштабах всей планеты.

Наконец возложено наступление и третьего этапа, когда Марс превратиться в младшего «брата» Земли. Люди смогут жить на поверхности без всяких приборов для дыхания. Плотность атмосферы будет такой же, как на плоскогорьях Мексики в горах Перу или Гималаев. И окружающие пейзажи будут во многом похожи на условия высокогорья на Земле. В отличие от высокогорья Земли на Марсе будут расти альпийские луга с высокими травами устойчивые к ветрам на возвышенностях, а в низинах высокие деревья ведь на Марсе меньше сила тяжести. Однако до этого этапа еще очень и очень далеко.

Учитывая все выше сказанное можно ожидать, что исходя из высших интересов развития земной цивилизации, Объеденные нации могут начать процесс терраформирования планеты Марс уже после завершения первого этапа его разведки.

Для успешной терраформации Марса требуется решить ряд сложных проблем. Первая и самая главная проблема. В настоящее время на Марсе слишком низкое давление. Среднее давление на поверхности Марса принято 6 мбар (600 Па) или 4.6 мм. рт.ст . Максимальное давление в глубоких депрессиях видимо порядка 10 мбар . Для существования земных форм жизни это слишком низкое давление.

5. Зачем поднимать давление на Марсе?

Причины для повышения давления очень существенные. При столь низком давлении, которое сейчас существует на Марсе, вода не может находиться в жидком состоянии. Это означает, что жизнь земного типа, основанная на водном растворе биологически активных веществ в клетках, не сможет существовать на Марсе. Вода в клетках просто будет вскипать. Конечно можно создать такие формы живого, которые смогут жить и в таких условиях, но есть другие причины. Поэтому первая задача терраформации достичь, давления при котором вода, не вскипая, будет находиться на поверхности Марса в жидком состоянии.

Другая важная причина - потребность создания для человека как можно более комфортных условий проживания. Разряженная атмосфера на Марсе создает больше проблем, чем вакуум на Луне. В первую очередь это связано с обильем пыли и большей возможностью для пыли переносится, и попадать туда, куда не нужно в условиях разряженной атмосферы. Пыль будет выводить из строя механизмы, скафандры и т.д. Если на Марсе увеличить давлении там можно будет рассадить растения, которые свяжут пыль, будут выпадать осадки, а в грунте будет сохраняться влага (летом) или будет лежать снег (зимой), которые ограничит пылевые эффекты. Наличие влаги приведет к уплотнению грунта, сдуваться будет тонкий, тонкий поверхностный слой. При более высокой плотности атмосферы ослабнут и сами пыльные бури.

Кроме того, большее количество парниковых газов поднимет среднюю температуру, станет теплее, что не маловажно для производственной деятельности и выживания. Большая плотность атмосферы уменьшит отдачу тепла с поверхности в ночное время и увеличит ночные температуры, и снизит общий перепад температур. Большая плотность атмосферы ослабит уровень радиоактивного облучения на поверхности планеты и уровень ультрафиолета.

Наконец есть еще одна причина. Она связана с выживанием людей в аварийных ситуациях. Аварийная ситуация в первую очередь связана с разгерметизацией скафандров или жилых объемов. При нынешнем низком давлении для ликвидации аварии у людей есть от нескольких секунд до нескольких минут. Все это не может не сдерживать колонизацию. Поэтому первой целью терраформации должно быть создание таких условий, когда человек сможет обходиться на Марсе без скафандра, только с дыхательным прибором или даже как отдаленная конечная цель создать условия для дыхания марсианским воздухом.

6. Пределы жизни

Живое земного типа может существовать только в определенных диапазонах физических параметров.

«Условия пригодности для обитания флоры и фауны» по Мак Кею

Параметр

Значение

Пояснение

Средняя температура

0 - 30 °C

Средняя температура поверхности должна

составлять около 15 °C

Флора

Среднее атмосферное давление

> 10 кПа ,

(>75Hg)

Основными компонентами атмосферы должны

быть: водяной пар, О 2 , N 2 , CO 2

Парциальное давление O 2

> 0,1 кПа ,

(>0.75Hg)

Дыхание растений

Парциальное давление CO 2

> 15 Па ,

(>0.1 Hg)

Нижний предел для условия протекания

реакции фотосинтеза; нет однозначного верхнего предела

Парциальное давление N 2

> 0,1-1 кПа ,

(>0.7 - 7.7Hg)

Азотфиксация

Пар (t = 15 °C)

<1 .7 кПа (< 12.8 Hg )

Давление насыщающих паров Н 2 О при 15°C.

Минимальная атмосфера

0.75О 2 +0.1СО 2 +0.7 N 2 +12 H 2 O + 62буфер = 75(Hg )

1%О2+1% N 2 +0.1% CO 2 +16%Н 2 О+82%буфер

Безуглекислотная атмосфера Марса

60% N 2 + 36%Ar+ 2%O 2 +2%(остальное)

Фауна

Среднее атмосферное давление

> 5 кПа , (>37,6Hg)

< 500 кПа ,

(<5 ат .)

Указаны минимальное и максимальные

давления

Парциальное давление O 2

> 25 кПа , (>188Hg)

Парциальное давление CO 2

< 10 кПа , (<75Hg)

Ограничение содержания CO 2 для избежания интоксикации

Парциальное давление N 2

> 30 кПа, (>225 Hg )

Буферное

В строке 6 дана прибавка давления которую даст водяной пар при температуре 15ºС в замкнутом помещении. В строке 7 приведен состав минимальной атмосферы, которая годиться для дыхания растениями. В качестве буфера может быть использовании азот, аргон или метан.

Как видно из приведенной таблицы для растений необходимо давление выше 75 мм. рт . ст., для животных выше 37.6 мм. рт . ст. (нижний предел за которым наступает летальный исход). Но для дыхания животным необходимо значительно более высокое давление кислорода. Для растений требуется давление кислорода выше 0.75 мм рт . ст., тогда как для животных свыше 188 мм. рт . ст.

Если рассматривать атмосферу необходимую только для растений (строка 7), то оказывается, что получить такой состав несложно. Достаточно удалить из нынешней атмосферы Марсе СО 2 и необходимый объем полученного газа сжать до необходимого давления в 75 мм. рт.ст . В результате такой марсианский воздух будет на 96% состоять из азота и аргона и будет содержать 2% кислорода. В такой воздух необходимо добавить не менее 0.01%СО 2 и нагреть до 15ºС , а парциальное давление водяного пара установится само собой в зависимости от режима полива. Так получается «безуглекислотная » атмосфера, которая вполне годится для растений в оранжереях.

Для проживания животных и людей необходимо обогащать безуглекислотный марсианский воздух кислородом. До парциального давления хотя бы в 188 мм. рт.ст . Одновременно нужно поднять и парциальное давление азота и аргона, чтобы довести соотношение кислорода и буферных газов примерно до соотношения в земной атмосфере. С задачей насыщения воздуха кислородом справятся растения или водоросли типа хлореллы. В дальнейшем можно замкнуть искусственную биосферу. Необходимо только точно соблюсти пропорцию между числом животных и биомассой растений. Но все это возможно только в замкнутых помещениях или в условиях существования колоний первого типа.

7. Выживание при пониженном давлении

Для колонистов будет актуальной проблема разгерметизации помещений и в первую очередь скафандров. При разгерметизации в условиях низкого внешнего давления основная опасность связана с ударной декомпрессией в случае серьезного повреждения скафандра. При дыхании чистым кислородом внутри скафандра давление будет не ниже 188 мм рт.ст . А в случае дыхания газовой смесью еще и выше.

Опыты по декомпрессии проводились на животных. Вот как их описывает астронавт Митчел . "В течение 1 сек давление в барокамере, где находились животные, понижали со 180 мм рт . ст. до менее чем 2 мм рт . ст. При столь низком давлении собаки находились в течение 5-10 сек, а шимпанзе - до 150 сек. И собаки и шимпанзе через 9-12 с. после начала декомпрессии впадали в шоковое состояние. В этот момент у них можно было наблюдать «раздутие» тел, конвульсии, затрудненное дыхание и общее спастическое состояние мышц. И если у 18-20% собак после 120-180 с. декомпрессии наступала смерть, то у всех шимпанзе после декомпрессии в течение 150 с. восстанавливалось нормальное состояние без каких-либо последствий для нервной системы. После рекомпрессии (повышения давления до нормального) они начинали самопроизвольно дышать. Следовательно, их сердечно-сосудистая система функционировала еще достаточно хорошо, чтобы восстановить нормальное кровяное давление.

Нескольких шимпанзе подвергли декомпрессии в атмосфере чистого кислорода, давление в барокамере снижалось в течение 0,8 сек со 179 до 2 мм рт.ст ., животных выдерживали при этом низком давлении 210 сек. После рекомпрессии , производившейся постепенно, шимпанзе поправлялись и были способны выполнять сложные задания, которым их прежде обучили. Повторные эксперименты неизменно давали те же результаты. Это свидетельствует о том, что человек тоже способен переносить экстремально низкие давления лучше, чем мы предполагаем. Вполне вероятно, что космонавта, находящегося за пределами космического корабля, можно будет спасти, если его скафандр неожиданно получит повреждения и в нем вследствие утечки начнет резко понижаться давление воздуха или кислорода".

На Марсе сейчас давление 4.6 мм рт.ст . Это вдвое больше, чемв описанных опытах, но этого все равно мало. При резком падении давления в скафандре у человека на Марсе остается всего 10 - 15 с. до потери сознания. Однако своевременная помощь, оказанная товарищами в течение 1 - 3 минут, способна спасти человека. Для этого необходима быстрая рекомпрессия до давления хотя бы 200 мм рт.ст .

В условиях низкого давлении или вакуума в начале наступает гипоксия, связанная с нехваткой кислорода и человек за 10 с. теряет сознание. Ныряльщик под водой использует запас кислорода в легких, здесь же такой возможности нет. Так как человек в вакууме должен выдохнуть воздух из легких, чтобы предотвратить разрыв внутренних тканей.

Следующий опасный процесс связан с кипением жидкостей в первую очередь крови, кровоток практически прекращается. Наступает фибриляция сердца и человек может уже в это момент умереть от остановки сердца. После остановки сердца реанимация уже практически невозможна, так как остановка сердца происходит по причине необратимых измерений в системе кровообращения. Из-за выделения газов во внутренних органах тело раздувается. Частично это раздутие можно компенсировать специальным костюмом, его используют пилоты стратосферных самолетов. Однако у пилота на высоте 15 км есть всего 10 с. чтобы принять решение на резкое снижение высоты.

В одном из полетов при разгерметизации перчатки на высоте 12 км, испытатель совершавший подъем на воздушном шаре достиг высоты в 30 км (10 мм рт.ст ). Его рука раздулась вдвое по сравнению с обычным состоянием, однако он смог завершить эксперимент успешно, а после возвращения на землю рука вернулась в норму через несколько часов. Дело в том, что сосуды и капилляры имеют гибкость, которая компенсирует падение внешнего давления.

Во время полета Шаттла STS -37 имело место повреждение перчатки одного из астронавтов. Однако наддув скафандра, и уплотнение из-за прижима ладони к поврежденному месту не привели к взрывной декомпрессии. Астронавт, будучи в состоянии возбуждения от выхода в открытый космос даже не заметил, что у него пробита перчатка. Он отделался пустяковой царапиной.

Поэтому при аварии скафандра главная угроза состоит в том, что человеку из-за утечки воздуха нечем дышать, перестает снабжаться кислородом мозг, а не от низкого давления. Для того чтобы избежать разрыва тканей в легких человек в момент аварии в условиях Марса связанной со взрывной декомпрессией должен максимально выдохнуть воздух и задержать дыхание с пустыми легкими. Надолго будет сделать трудно, так как инстинктивно человека будет одолевать желание вдохнуть. Но вдыхать воздух Марса опасно. Избыток углекислоты может привести к отравлению организма. Хотя из разряженной атмосферы видимо не удастся вдохнуть сколько-нибудь значительное количество углекислого газа. Человек потеряет сознание раньше, чем атмосфера Марса наполнит поврежденный скафандр. Остановка дыхания предотвратит дальнейшее проникновение марсианского воздуха в организм пострадавшего.

Поэтому при наличие внешнего давления в несколько десятков мм. рт.ст все эти проблемы будут существенно ослаблены. В этом случае для компенсации падения давления и раздутия кровеносной системы можно применить специальный компенсирующий костюм, подобный тем, что применялись в высотной авиации. Наличие компенсирующего костюма и кислородной маски сделает возможным выживание человека даже с поврежденным скафандром. Здесь уже большую опасность может представлять переохлаждение или отравление СО 2 при наличие плохого прилегания маски к лицу и подсоса газа извне. В этом случае речь уже не идет о секундах до фатального исхода, что сделает многие аварийные случаи менее опасными.

8. Возможность и масштаб реконструкции атмосферы

Насколько нужно поднять давление на Марсе, чтобы человек мог обходиться без скафандра?

Тут есть два варианта.

1. Дыхание через кислородную маску.

2. Непосредственное дыхание марсианским воздухом.

В качестве критерия можно взять следующий фактор. Жидкости в организме находятся при температуре 37º С . Кипению воды при температуре в 40º С соответствует давление 55 мм рт.ст ., что на Земле соответствует высоте 18 км. Таким образом, давление окружающей среды в любом случае быть не ниже 55 мм рт.ст .

Следует различать два случая. Случай пребывания в условиях марсианской атмосферы, вне жилых помещений без скафандра и случай пребывания в оранжереях и подсобных помещениях, где атмосфера отличается от стандартной. Эти случаи отличаются только составом атмосферы, поскольку в специальных помещениях она будет искусственной.

Пребывание при пониженном давлении предполагает совершение движений и работы, а не просто выживание. Во время восхождения альпинистов на вершину совершается тяжелая работа. Наибольшая высота, на которой люди активно работали на Земле соответствует высоте 8.8 км (Эверест). Альпинисты на такой высоте могут обходиться без кислородной маски, но тяжелая работа и длительное пребывание на такой высоте требует обязательного применения кислородной маски. Выжить на такой высоте можно, только совершая минимум движений. Таким образом, человек может жить при давлении соответствующем высоте около 9 км. На такой высоте давление воздуха всего 230 мм рт.ст . или в 3 раза меньше, чем на равнине. Видимо чуть более чем в три раза меньше и содержание кислорода. Примем парциальное давление кислорода на высоте в 9 км 55 мм рт.ст .

Итак, если бы атмосфера Марса состояла бы из чистого кислорода достаточно было бы давления в 55 мм рт.ст . При таком давлении вода уже не вскипает при температуре человеческого тела и кислорода должно хватить для простого поддержания жизненных функций. Однако минимальным считается давление чистого кислорода порядка 180 мм рт . ст. Чисто кислородную атмосферу на Марсе можно создать только в замкнутом объеме жилого помещения или скафандра.

Как показано выше для оранжерей достаточно будет создать искусственную атмосферу с давлением в 75 и более мм. рт.ст . и минимальным содержанием СО 2 , что позволит работать в таких условиях без скафандра, а только с кислородной маской. Понятно, что это минимальное требование для жизни растений.

Создание больших площадей оранжерей или лучше назвать их теплицами потребует больших объемов капитального строительства. Поскольку численность колонии связана с общей потребной площадью теплицы (оранжереи), а это определяет объем строительных работ, что в свою очередь связано ссоставом атмосферы и внутренним давлением. Более подробно об этом рассказано в разделе о строительстве на Марсе.Поэтому не обязательно состав атмосферы и давление в нежилых помещениях будет такой же как и в жилых помещениях.

Предположим с помощью растений удастся поднять содержание кислорода в атмосфере Марса до парциального давленияпревышающего 55 мм рт.ст . Очевидно, что из чистого кислорода пусть даже при низком давлении атмосфера состоять не может. Высокая концентрация кислорода не просто опасна, она и не возможна, так как кислород неизбежно будет связываться в результате химических реакций. Для ограничения этого процесса нужен буферный газ. Роль такого буферного газа на Земле выполняет азот. В условиях Марса таким буферным газом может быть тот же азот и аргон. В качестве буферного газа в небольших количествах в атмосфере может содержаться и метан.

Создать парциальное давление кислорода в атмосфере Марса выше 55 мм рт . ст. это только одна часть задачи терраформации . Другая проблема наличие СО 2 . Известно, что превышение 4% СО 2 в воздухе приводит к отравлению людей и животных. Поэтому в идеальном случае СО 2 в атмосфере Марса не должно быть больше 4%. Поэтому главная проблема окончательного этапа терраформации даже не проблема создание кислородной атмосферы, а проблема связывания избытка углекислоты и наполнения атмосферы взамен углекислоты буферным газом.

В настоящее время в атмосфере Марса содержится 95% СО 2 , но даже если из всей углекислоты выделить кислород, его будет мало, всего 3 мм рт.ст ., а необходимо как минимум >55 мм рт.ст . Следовательно для обеспечение минимума по кислороду нужно выделить из полярных шапок, освободить из окислов или доставить извне более чем десятикратный объем газов по сравнению с тем, что ныне находится в атмосфере Марса. Потом это газ содержащий много СО 2 нужно переработать и очистить. Это уже работа для растений, рассчитанная на сотни лет.

Но и этого мало. Надо где-то взять буферный газ, поскольку своих запасов азота или аргона на Марсе крайне мало.

На Земле большие объемы СО 2 из атмосферы растворяет океан. Для Марса этот путь не эффективен. Газов и так мало. Растворение СО 2 в марсианском океане приведет только к снижению общего давления. Снижение давления и содержания СО 2 приведет к уменьшению парникового эффекта, начнется новый ледниковый период. Все опять замерзнет. Правда растворенный в водоемах СО 2 водоросли могут переработать в кислород, как это они делают на Земле. Наличие же паров воды в атмосфере поддержит парниковый эффект, но больше пара в атмосфере появится, только если средняя температура будет выше. Получается замкнутый круг или иначе саморегулирующаяся система.

Поводя итоги можно сделать выводы. На Марсе теоретически возможно создать условия для жизни там земных растений, а возможно и некоторых насекомых. Для этого необходимо поднять давление до 75 мм. рт.ст . (примерно в 15 раз) и температуру чуть выше нуля. Такое давление позволит и человеку в специальном костюме и кислородной маске некоторое время, а возможно и длительное время пребывать на Марсе без скафандра. На Земле такое давление соответствует высоте в 16 км.

Однако это возможно при достаточно больших запасах замерзшей углекислоты, которую следует испарить в результате техногенной деятельности. Если углекислоты недостаточно, то на Марс придется доставлять газы извне, что сделает терраформацию очень длительной и очень сложной задачей.

Как альтернатива – создание специфических растений или микроорганизмов способных выживать в марсианских условиях и способных постепенно преобразовывать атмосферу и грунт в нужном для дальнейшей терраформации направлении.

Понятно, при доставке на Марс необходимых масс газов можно создать атмосферу любого состава, но это поистине титаническая работа.

Грубо оценим необходимый минимум для выживания людей без дыхательных приборов на поверхности Марса. Пусть парциальное давление кислорода хотя бы 55 мм рт.ст . Давление буферного газа в два – три раза больше или 150 мм. рт.ст . Пусть это смесь азот, аргон и возможно метан.

Всего примерно давление такой атмосферы примерно 200 мм рт.ст ., что очень близко к давлению на Эвересте. Всю углекислоту связали растения и остаточная концентрация СО 2 пусть не больше 1-2%.

Примерный состав: 25% - О 2 , 30% - азот, 40% - аргон, 2 % - метан и 2% - СО 2 . Наверно таким воздухом можно дышать. Соотношение буферных газов может быть иным.

Сейчас суммарный объем газов в атмосфере Марса обеспечивает давление в 4.6 мм рт.ст . или в почти в 40 раз меньше. Иначе, для создания подходящей для выживания (не проживания!) атмосферы на Марс надо испарить из полярных шапок или привести извне примерно 40 объемов нынешней атмосферы. Оценка грубая, поскольку давление зависит от температуры и при более высокой температуре потребный объем будет меньше. Примерно 30 объемов.

Тем не менее, объемы огромные. Поэтому полная терраформация Марса дело очень и очень отдаленного будущего.

Более реально только повышение давления и температуры выше критического давления соответствующего тройной точке воды.

9. Роль воды в регулировании климата на Марсе

В целом связь между состоянием воды и условиями на планетах земной группы иллюстрирует приводимая здесь диаграмма состояния воды. Напомню, поскольку вода может существовать в трех фазах (лед, вода, пар), а температуры плавления и кипения воды зависят от давления, то график состояния воды имеет вид двурогой кривой. При температурах ниже 0º С (левая часть графика) вода находится в виде льда или пара. При температура выше 0º С (правая часть графика) вода находится или в жидком состоянии или в виде пара. Только при давлении выше 610 па (4.58 мм рт.ст .) вода может существовать в жидком виде. Поэтому точка, где вода может одновременно существовать и во всех трех фазах имеет координаты (р = 610.6 Па; t = +0.01С).

На графике жирными линиями, оранжевая - Марс, синяя - Земля, для Венеры красным квадратом указано нынешние условия на планетах земной группы. Прямоугольник под линией показывает диапазон давлений и температур с учетом рельефа планеты. На Марсе существуют более высокие горы, а впадины на Земле заполнены океаном, поэтому высоте прямоугольников разная. На Венере условия слабо зависят от высоты и широты на планете, поэтому они представлены маленьким квадратом. Конечные состояния послетерраформации для Венеры и Марса показаны стрелками.

Совпадение оранжевой полоски с нижней стороной прямоугольника как раз и означают, что в конце терраформации условия на Марсе должны соответствовать условиям на Земле высоко в горах. На Венере скорее всего и температура и давление будет выше, чем на Земле, поэтому конечное состояние показано выше.

10. Инженерия атмосферы Марса

Для Венеры нужно уменьшить давление и соответственно плотность атмосферы, что можно сделать только одним способом - убрать большую часть атмосферных газов. Удалить газы из атмосферы Венеры можно, либо рассеяв их в мировом пространстве, что весьма расточительно, либо связав их с породами в нелетучие химические соединения. Терраформация Венеры рассмотрена отдельно и здесь Венера упомянута для сравнения, и учитывая, что на некоторых этапах терраформация Марса и Венеры могут идти параллельно.

У терафомации Марса иная проблема. Тут надо наоборот увеличить количество газов в атмосфере. Сделать это можно двумя способами. Либо растопить льды и высвободить газы из грунта, либо доставить колоссальные объемы газов с других планет. Казалось бы растопить льды проще. Но есть проблема. Мы еще не знаем полного объема льда и не знаем его состава. Если лед на Марсе преимущественно состоит из водяного льда, то наполнить атмосферу будет нечем. Водяной пар не наполнит атмосферу. Тогда придется доставлять газы извне.

Часто предлагают бомбардировать Марс кометами. Однако это не может кардинально решить проблему. По крайней мере, комет пролетающих во внутренней части Солнечной системы не так и много. Не известно, сколько астероидов в поясе астероидов состоят из льда.

Можно ли на это рассчитывать? Перегонять кометы из пояса Койпера ? Пока при нынешнем уровне развития техники это выглядит слишком фантастично. Но проблема в другом. Водяной лед не может поднять давление на планете. Тут нужны иные газы, такие как углекислый газ, метан, аргон, азот, аммиак, этан, ацетилен.

Сейчас средняя температура Земли +15º С , а средняя температура Марса -53º С . Среднее давление на Марсе чуть ниже или очень близко к давлению соответствующего тройной точке. Поэтому на Марсе не может существовать вода в жидком виде, а только в виде льда или пара. Хотя в глубоких впадинах давление может быть чуть выше тройной точки до 1000 Па и там вода может при плюсовых температурах находиться в виде жидкости. В настоящее время образование значительных объемов жидкой воды может реализоваться скорее случайно, например, при вытекании подземных вод или как результат таяния вечной мерзлоты.

Близость давления на Марсе к тройной точке воды косвенно указывает на то, что полярные шапки состоят по большей части из воды. Тем более что при существующем на Марсе давлении даже на полюсах температура несколько не достигает температуры замерзания углекислоты. Отсюда следует, что по большей части шапки Марса состоят из льда. Для будущих колонистов Марса это приятная новость. Но для наполнения атмосферы требуется выделить много газов. Поэтому вопрос о количестве замерзшей углекислоты в полярных шапках является ключевым для дальнейшей судьбы планеты. Если в твердом виде на Марсе имеются достаточные запасы углекислоты, то разогрев планеты в результате техногенной деятельности может поднять давление выше давления соответствующего тройной точке, тогда на Марсе возможно таяние ледников, появление водоемов с водой и в конце концов существование жизни земного типа на поверхности планеты. В противном случае разогрев полярных шапок не увеличит давления на планете. Поскольку вода легко претерпевает фазовый переход, особенно если этому благоприятствует температуры внешней среды (около 0º С ), то поднять содержание воды в атмосфере и таким образом увеличить давление не возможно.

Потому вся надежда дальнейшей терраформацией Марса может быть связана с наличием в составе полярных шапок достаточного количества замерзшей углекислоты.

Конечно, можно допустить, что в далекие времена, когда еще давление на Марсе было выше, углекислота замерзала при более высокой температуре. Допускается, что давление на Марсе могло достигать 1 - 3 земных атмосфер. Например, при нормальном давлении углекислота замерзает при температуре -56.6º С . До такой температуры охлаждается полюса Земли, а на Марсе было еще холоднее. Учитывая, что основным компонентом атмосферы является именно СО 2 , то следует предположить, что СО 2 в вперемешку с Н 2 О образует полярные шапки Марса. Углекислота в отличие от воды испаряется и замерзает с меньшими затратами энергии. Но в смеси с обычным льдом такой процесс сильно замедляется. Поэтому в глубине полярные шапки могут содержать значительное количество углекислоты.

В какой-то момент давление на Марсе снизилось настолько, что процесс вымерзания углекислоты прекратился. Состояние атмосферы стабилизировалось. Остался только процесс потери атмосферы вследствие убегания молекул в космос. За миллионы лет Марс растерял значительную часть своей атмосферы в частности все легкие газы и азот.

11. Разогрев полярных шапок

Первым этапом терраформации станет разогрев полярных шапок. Самое простое и очевидное решение использовать для этих целей солнечную энергию, отражаемую орбитальным зеркалом . Для этого предварительного нагрева предлагается и два других метода: сброс нескольких астероидов содержащих аммиак, производство парниковых газов на марсианских заводах.

Орбитальное зеркало . Для разогрева полярных шапок требуется отразить с помощью гигантского зеркала часть солнечной энергии на направить её в область полярных шапок. Солнечная постоянная - суммарный поток солнечного излучения, проходящий за единицу времени через единичную площадку, ориентированную перпендикулярно потоку, на расстоянии одной астрономической единицы от Солнца вне земной атмосферы. По данным внеатмосферных измерений солнечная постоянная составляет 1367 Вт/м² . Солнечная постоянная на орбите Марса составляет 43% от солнечной постоянной на орбите Земли. Это не мало и составляет примерно 0.58 кват на каждом квадратном метре.

На Марсе, так же как и на Земле, зимой на одном из полюсов наступает полярная ночь. В летнее время солнце поднимается выше, угол падения лучей больше и в районе полярной шапки поверхность нагревается, и шапка частично тает. Однако испаряющиеся газы переносятся в противоположное полушарие, где в это время царит зима, и снова конденсируются. Поэтому для решения задач терраформации более актуальным является подогрев именно зимнего полушария.

Не лишено смыла и прогрев поверхности Марса не только в полярных районах, так как под слоем песка может быть вечная мерзлота. Однако такой разогрев вечной мерзлоты с помощью концентрации солнечных лучей будет мало эффективным.

Расположив зеркало с противоположной стороны относительно солнца как раз и можно направлять солнечные лучи в район полярной шапки, где как раз наступает зима. Проблему представляет то, что зеркало должно вращаться по орбите вокруг планеты. Некоторые ученые предлагают найти для зеркала относительно стабильную точку. В качестве такой точки предлагается расположить зеркало на расстоянии 214 тыс км. от поверхности Марса. Здесь сила притяжения будет уравновешена силой давления солнечного света. Основной вывод авторов этой идеи такой, что требуется поднять температуру примерно на 4 градуса, тогда начнет таять полярная шапка, нагрев планеты высвободит газ адсорбированный в реголите и все вместе это поднимет давление до 500 - 1000 мбар . Оптимистично, не так ли, учитывая, что сейчас давление всего 6 -10 мбар .

12. Создание примитивной биосферы

Следующим этапом после подъема давления хотя бы в два - три раза будет заселение Марса живыми организмами. Наверно можно найти земные микроорганизмы способные выжить в условиях Марса или вывести таковые методами генной инженерии. Определенным подтверждением такой возможности стали недавно обнаруженные на Земле на глубине 200 м микроорганизмы - метаногены , питающиеся водородом и дышащие углекислым газом. Специально же проведенный учеными эксперимент доказал, что подобные микроорганизмы могли бы выжить и в суровых марсианских условиях.

Если бы давление на Марсе превосходило нынешнее в несколько раз, там могли бы существовать простые организмы типа водорослей или лишайников. Однако это должны быть растения способные противостоять ультрафиолетовому излучению. Ультрафиолетовое излучение можно поглотить внешней "корой" на основе углеродной органики или на основе неорганических материалов кремний-кальциевой-алюминий-кислородно-углеродной оболочкой по типу того, что на основе кальцита создают кораллы или моллюски. Важно, что при давлениивыше тройной точки на Марсе уже во многих местах будет выпадать роса, которую смогут поглощать растения. Кроме того растения могут поглощать влагу даже из атмосферы, так поступают некоторые растения выживающие в земных пустынях. Однако жизнь на основе воды на Марсе еще долго будет невозможной. Так как вода может замерзнуть внутри организма. Однако эту проблему можно преодолеть, если растения будут использовать для метаболизма не воду как таковую, а некие растворы типа антифриза, которые не будут замерзать при отрицательных температурах.

Существует так же возможность выживания на Марсе живых существ, не использующих воду. Среди земных насекомых есть такие виды моли, которые не содержат в своем организме воду.

Однако основные задачи, которые будет решаться с помощью марсианских растений, будут следующие. Преобразование атмосферы и насыщение её кислородом, преобразование грунта в почву, связывание почвы. Сильные пыльные бури возникают на Марсе из-за того, что в условиях низкой тяжести мелкая пыль легко поднимается в атмосферу. Если бы грунт был чуть влажный, а на грунте росли бы растения, выдувание пыли в атмосферу уменьшилось бы в разы. Напомню, что при пыльных бурях поверхность сильно остывает, поэтому для будущего Марса пыльные бури явление негативное.

Продолжение следует.

Углекислый газ 95,32 %
Азот 2,7 %
Аргон 1,6 %
Кислород 0,13 %
Угарный газ 0,07 %
Водяной пар 0,03 %
Оксид азота(II) 0,013 %
Неон 0,00025 %
Криптон 0,00003 %
Ксенон 0,000008 %
Озон 0,000003 %
Формальдегид 0,0000013 %

Атмосфера Марса - газовая оболочка, окружающая планету Марс . Существенно отличается от земной атмосферы как по химическому составу, так и по физическим параметрам. Давление у поверхности составляет 0,7-1,155 кПа (1/110 от земного, или равно земному на высоте свыше тридцати километров от поверхности Земли). Примерная толщина атмосферы - 110 км. Примерная масса атмосферы 2,5·10 16 кг. Марс имеет очень слабое магнитное поле (по сравнению с земным), и в результате солнечный ветер вызывает диссипацию атмосферных газов в космос со скоростью 300±200 тонн в день (в зависимости от текущих солнечной активности и расстояния от Солнца).

Химический состав

4 миллиарда лет назад атмосфера Марса содержала количество кислорода, сопоставимое с его долей на юной Земле.

Температурные колебания

Поскольку атмосфера Марса сильно разрежена, она плохо сглаживает суточные колебания температуры поверхности. Температура на экваторе колеблется от +30°C днём до −80°C ночью. На полюсах температура может падать до −143°C. Однако суточные колебания температуры не столь значительны, как на безатмосферных Луне и Меркурии. Низкая плотность не мешает атмосфере формировать масштабные пыльные бури и смерчи, ветра, туманы, облака, влиять на климат и поверхность планеты.

Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора , проводились ещё в начале 1920-х годов. Измерения В.Лампланда в 1922 году дали среднюю температуру поверхности Марса 245 (−28°C), Э.Петтит и С.Никольсон в 1924 году получили 260 K (−13°C). Более низкое значение получили в 1960 году У.Синтон и Дж.Стронг: 230 K (−43°C).

Годовой цикл

Масса атмосферы в течение года сильно меняется из-за конденсации в полярных шапках больших объёмов углекислого газа в зимнее время и испарения - в летнее.

Всякая планета отличается от остальных рядом признаков. Люди сравнивают другие, найденные, планеты с той, которую они хорошо, но не идеально, знают – это планета Земля. Ведь это логично, на нашей планете смогла появится жизнь, а это значит что если искать планету, схожую с нашей, то там тоже будет возможно найти жизнь. Из-за этих сравнений у планет и появляются свои отличительные особенности. Например у Сатурна есть прекрасные кольца, из-за которых Сатурн называют самой красивой планетой Солнечной системы. Юпитер самая большая планета в Солнечной системе и эта особенность Юпитера. Так какие есть особенности у Марса? Об этом эта статья.

Марс, как и многие планеты Солнечной системы, имеет спутники. Всего у Марса имеется два спутника это Фобос и Деймос. Спутники получили свои названия от греков. Фобос и Деймос были сыновьями Ареса (Марса) и всегда были рядом с отцом, как и эти два спутника всегда рядом с Марсом. В переводе “Фобос” означает “страх”, а “Деймос” – “ужас”.

Фобос это спутник, орбита которого располагается очень близко к планете. Это самый близкий спутник к планете во всей Солнечной системе. Расстояние от поверхности Марса до Фобоса составляет 9380 километров. Спутник обращается вокруг Марса с частотой 7 часов 40 минут. Получается, что Фобос успевает совершить три с небольшим оборота вокруг Марса, пока сам Марс сделает один оборот вокруг своей оси.

Деймос это самый маленький спутник в Солнечной системе. Размеры спутника равны 15х12,4х10,8 км. А расстояние от спутника до поверхности планеты равно 23 450 тысяч км. Период обращения Деймоса вокруг Марса составляет 30 часов 20 минут, это немного больше, чем время, которое тратит планета для оборота вокруг своей оси. Если вы будете на Марсе, то Фобос будет восходить на западе и заходить на востоке, при этом совершая три оборота за сутки, а Деймос, наоборот, восходит на востоке и заходит на западе, при этом совершая лишь один оборот вокруг планеты.

Особенности Марса и её Атмосферы

Одной из главных особенностей Марса является то, что была создана . Атмосфера на Марсе весьма интересна. Сейчас атмосфера на Марсе очень разряжена, возможно, что в будущем Марс совсем потеряет свою атмосферу. Особенности атмосферы Марса в том, что когда-то давно Марс имел такую же атмосферу и воздух, как и на нашей родной планете. Но в ходе эволюции Красная планета потеряла почти всю свою атмосферу. Сейчас же давление атмосферы Красной планеты составляет лишь 1% от давления нашей планеты. Особенности атмосферы Марса также то, что даже при втрое меньшей силе тяжести планеты, относительно Земли, Марс может поднимать огромные пылевые бури, поднимаю в воздух тонны песка и почвы. Пылевые бури уже не раз попортили нервы нашим астрономам, так как пылевые бури бывают очень обширными, то наблюдение с Земли за Марсом, становится невозможным. Иногда такие бури могут даже длиться месяцами, что очень портит процесс изучения планеты. Но исследование планеты Марс на этом не останавливается. На поверхности Марса есть роботы, которые не прекращают процесс изучения планеты.

Атмосферные особенности планеты Марс так же и в том, что догадки ученых о цвете марсианского неба, были опровергнуты. Ученые считали, что небо на Марсе должно быть черным, но снимки, сделанные космической станцией с планеты, опровергнули эту теорию. Небо на Марсе вовсе не черное, оно розовое, благодаря частицам песка и пыли, которые находятся в воздухе и поглощают 40% солнечного света, благодаря этому и создается эффект розового неба на Марсе.

Особенности температуры Марса

Измерения температуры Марса начались относительно давно. Все началось с измерений Лампланда в 1922 году. Тогда измерения говорили о том, что средняя температура на Марсе равна -28º С. Позднее, в 50-х и 60-х годах были накоплены некоторые знания о температурном режиме планеты, которые проводились с 20-х годов по 60-е года. Из этих измерений получается, что днем на экваторе планеты температура может доходить до +27º C, но уже к вечеру она упадет до нуля, а к утру становится -50º С. Температура на полюсах колеблется от +10º С, во время полярного дня, и до весьма низких температур, во время полярной ночи.

Особенности рельефа Марса

Поверхность Марса, как и других планет, не имеющих атмосферу, изранена различными кратерами от падений космических объектов. Кратеры бывают маленьких размеров (5 км. в диаметре) и большие (от 50 и до 70 км. в диаметре). Из-за отсутствия своей атмосферы, Марс подвергался метеоритным дождям. Но поверхность планеты содержит не только кратеры. Раньше люди считали, что на Марсе никогда не было воды, но наблюдения за поверхностью планеты говорят о другом. Поверхность Марса имеет каналы и даже небольшие углубления, напоминающие водные месторождения. Это говорит о том, что на Марсе была вода, но по многим причинам она исчезла. Сейчас уже сложно сказать, что нужно сделать, чтобы вода на Марсе снова появилась и мы могли бы наблюдать за воскрешением планеты.

На Красной планете так же имеются и вулканы. Наиболее известный вулкан – Олимп. Этот вулкан известен всем тем, кто интересуется Марсом. Этот вулкан – самая большая возвышенность не только на Марсе, но и в Солнечной системе, это еще одна особенность этой планеты. Если стоять у подножья вулкана Олимп, то невозможно будет увидеть край у этого вулкана. Этот вулкан так велик, что его края уходят за горизонт и кажется, что Олимп бесконечен.

Особенности Магнитного поля Марса

Это, пожалуй, последняя интересная особенность этой планеты. Магнитное поле это защитник планеты, который отталкивает все электрические заряды, двигающиеся в сторону планеты и отталкивает их с первоначальной траектории. Магнитное поле полностью зависит от ядра планеты. Ядро на Марсе почти неподвижно и, следовательно, магнитное поле планеты очень слабое. Действие Магнитного поля весьма интересно, оно не глобально, как на нашей планете, а имеет зоны, в которых оно более активно, а в других зонах его может совсем не быть.

Таким образом, планета, которая нам кажется такой обычной, имеет целый набор своих особенностей, некоторые из них являются лидирующими в нашей Солнечной системе. Марс не такая простая планета, как вам может показаться на первый взгляд.

Общая ошибка, которая обычно делает оценки климатических условий конкретной планеты, - путать давления с плотностью. Хотя с теоретической точки зрения мы все знаем разницу между давление и плотность, в действительности он берется для сравнения атмосферного давления на земле с атмосферное давление данной планеты без мер предосторожности.

В любой земной лаборатории, где гравитация примерно такой же, Эта предосторожность не нужен и часто использует давление как «синоним» плотность. Некоторые явления обрабатываются безопасно с точки зрения стоимости «давления/температуры», как например фасы диаграм (или Диаграмма состояний), где в действительности было бы более правильно было бы говорить о «коэффициент плотности и температуры» или «под давлением/температуры», в противном случае мы не понимаем присутствие жидкой воды в отсутствие гравитации (и затем невесомости) в космических аппаратов на орбите в космосе!

На самом деле, технически атмосферное давление составляет «вес», которое оказывают определенное количество газа над нашими головами на все, что находится под. Однако реальная проблема заключается в том, что вес обусловлено не только плотность но очевидно тяжести. Если мы например уменьшение тяжести Земли 1/3, Очевидно, что такое же количество газа, что выше нас будет иметь одну треть своего первоначального веса, Несмотря на количество газа остается точно то же самое. Так, то, в сравнении климатические условия между двумя планетами бы более правильно говорить к плотности, а не давление.

Мы очень хорошо понимаем этот принцип путем анализа функционирования Торричелли барометр, Первый документ, который был измеряется земли атмосферное давление. Если мы заполним закрыт Тюбе ртути на одной стороне и множество вертикально с открытым концом погруженной в бак, наполненный ртутью также, Вы заметите, формирования вакуумной камеры в верхней части соломы. Торричелли фактически отметил, что внешнее давление, відсутні в соломе, Это было для поддержки столбца ртути высокой примерно 76 см. Путем расчета продукт удельной ртути, ускорение силы тяжести Земли и высота колонны ртути, можно вычислить вес выше атмосферы.

Из Википедии по адресу: http:/// Вики/Tubo_di_Torricelli it.wikipedia.org

Эта система, блестящий для своего времени, Однако сильные ограничения при применении в «Земляне». На самом деле, как настоящий гравитации в двух из трех факторов формулы, Любая разница в гравитации производит квадратичной разница в ответ барометр, затем, один и тот же столбец воздуха, на планете с 1/3 оригинальные гравитации, будет производить, для барометр, Торричелли, под давлением 1/9 исходное значение.
Ясно, Помимо инструментальная артефактов, факт остается фактом: тот же столбец воздуха будет иметь вес пропорциональны тяжести, планеты на которых время от времени мы будем иметь это так просто барометрическое давление не является абсолютным показателем плотности!
Этот эффект систематически игнорируется в анализе атмосферы Марса. Мы говорим легко давления в гПа и сделки непосредственно с земли, полностью игнорируя давление гПа, что гравитация на Марсе о 1/3 что земли (для точности 38%). Те же ошибки вы сделали, когда вы посмотрите на фасы диаграм воды, чтобы продемонстрировать, что на Марсе, вода не может существовать в жидкой форме. В частности, тройной точки воды, на земле 6.1 гПа, но на Марсе, где гравитация это 38% что земли, Если вы делаете в hPa, было бы абсолютно 6.1 но для 2.318 гПа (Хотя барометр, ознаменует Торричелли 0.88 гПа). Этот анализ, однако, это всегда, на мой взгляд обманным путем, систематически избегать, Восстановление обозначение в те же значения земли. Же указание 5-7 ГПА для марсианской атмосферное давление явно не указаны ли в виду земной гравитации или Марс.
На самом деле 7 hPa на Марсе должна иметь плотность газа на земле будет измерения о 18.4 гПа. Это абсолютно избежать во всех современные исследования, Скажем, в второй половине 60 Далее, В то время как ранее строго указано, что давление было одной десятой от земли но с плотностью 1/3. С чисто научной точки зрения был рассмотрен реальный вес столба воздуха, что приводит как 1/3 его фактический вес на земле, но что на самом деле плотность была сопоставима с 1/3 что земли. Как прийти в последних исследованиях существует эта разница?

Может быть потому что это проще рассуждать о невозможности сохранить жидкой фазы воды?
Есть другие ключи для этого тезиса: Каждый атмосфера на самом деле производит рассеяния света (рассеяние) преимущественно в синем, что даже в случае Марс могут легко анализироваться. Хотя атмосфера Марса кучу пыли, чтобы сделать его красноватый, разделение синий компонент цвета панорамного изображения Марса, Вы можете получить представление о плотности атмосферы Марса. Если мы сравним земной небо снимки, сделанные на разных высотах, а потом с разной степенью плотности, Мы понимаем, что номинальный размер, в котором мы должны найти 7 гПа, т.е. 35.000 m, небо полностью черный, Сальво ярмарка горизонт полоса, где на самом деле мы все еще видим в слоях нашей атмосферы.

Слева: Съемка марсианского пейзажа, сделанные зондом следопыта 22 Июнь 1999. Источник: http://photojournal.JPL. nasa.gov/catalog/PIA01546 право: Синий канал рисунок рядом; Обратите внимание, интенсивность неба!

Слева: Сидней - город Юго-Восточной Австралии, Столица штата Новый Южный Уэльс, на 6 m. Право: Синий канал рисунок рядом.

Слева: Сидней, но всегда во время песчаной бури. Право: Синий канал рисунок рядом; как вы можете видеть, Подвесные пыли уменьшить яркость неба, а не увеличить его, Вопреки тому, что утверждается в случае НАСА Mars!

Очевидно, что фотографии марсианского неба, отфильтрованные синяя полоса, гораздо ярче, почти сопоставима с изображений, снятых на горе Эверест, чуть меньше чем 9.000 m, где смотреть, если атмосферное давление составляет 1/3 нормальный уровень моря давление.

Еще одним свидетельством серьезных пользу марсианский плотности атмосферы выше, чем объявленные, была предоставлена феномен пыль Девилс. Эти «мини Торнадо» способны поднять песка столбцов до нескольких километров; Но как это возможно?
НАСА, сам пытался имитировать их, в вакуумной камере, Имитация марсианского давления 7 гПа, и они не смогли моделировать явления, если не поднимает давление по меньшей мере 11 раз! Начальное давление, даже при использовании очень мощный Вентилятор, не мог снять что-нибудь!
На самом деле, 7 ГПа, действительно просто, Учитывая тот факт, что помимо возвышается над уровнем моря снижается быстро сразу для дробных значений; но тогда все явления наблюдается вблизи горы Олимп, что это означает 17 км высоты, Как можно будет?

Это известно из телескопических наблюдений, Марс имеет очень активную атмосферу, особенно в отношении формирования облака и туманы, не только песчаных бурь. Наблюдения Марса в телескоп в самом деле, Вставка синий светофильтр, Вы можете выделить все эти атмосферные явления далеко не незначительной. Утром и вечером туман, орографические облака, в телескоп с средней мощности СМИ всегда наблюдались полярные облака. Любой человек может к примеру, с обычной графической программы, отдельные три красных уровни, Грин, синий цвет изображения Марса и проверить как это работает. Образ, соответствующий красный канал предоставит нам хорошая Топографическая карта в то время как синий канал покажет полярных ледяных шапок и облака.. Это легко сделать это как на снимки, сделанные с помощью малых телескопов, Оба на снимки с космического телескопа. Кроме того, в изображения, полученные с космического телескопа, Вы заметили синий границы, вызванных атмосферы, что затем появляется синий и красный не, как показано на месте изображения.

Типичные изображения Марса, принятые космический телескоп Хаббла. Источник: http://Science.NASA.gov/Science-News/Science-at-NASA/1999/ast23apr99_1/

Красный канал (слева), Зеленый канал (Центр) и синий канал (право); Обратите внимание, экваториальных облако.

Еще один интересный момент - анализ полярных месторождений; пересечение высотные данные и gravitometrici, Это было невозможно определить, что полярный месторождения различаются сезонно примерно 1.5 метров на Северный полюс и 2.5 метров на Южном полюсе, с средней плотности населения в то время максимальная высота примерно 0.5 g/см 3 .

При этом плотность, 1 мм снега в CO 2 производит давление 0.04903325 гПа; Теперь, даже если предположить наиболее оптимистичный марсианского давления, приведенные выше 18.4 гПа, игнорируя тот факт, что CO 2 представляет 95% и не 100% атмосфера Марса, Если мы все condensassimo атмосферы на земле будет получить слой 37.5 см толщиной!
С другой стороны, 1.5 футов снега углекислого газа с плотностью 0.5 g/см 3 производит давление 73.5 ГПа и 2.5 метров вместо 122.6 гПа!

Время эволюция поверхности атмосферное давление, записано два Викинг Ландерс 1 и 2 (Викинг Ландер 1 Он приземлился в Хриса космизм в 22.48° n, 49.97° Западной долготы, 1.5 Км ниже среднего уровня. Викинг Ландер 2 Он приземлился в утопии космизм в 47.97° n, 225.74° Западной долготы, 3 Км ниже среднего уровня), в течение первых трех лет марсианской миссии: 1й год (точки), 2й год (сплошная линия) и 3 года (Пунктирная линия) укладываются в том же графе. Источник Тилман и гость (1987) (Смотрите также Тиллман 1989).

Рассмотрим также, что, Если масса сезонные сухого льда был похож между двумя полушариями не должна вызывать сезонные вариации глобального атмосферного давления, Так как распад полярной шапки всегда будет компенсироваться конденсации на полу в другом полушарии.

Но мы знаем, что уплощение марсианской орбиты создает разница почти 20° c средняя температура двух полушарий, с вершины до 30° C пользу Широта-30 ° ~. Имейте в виду, что 7 ГПа CO 2 ICES-123 ° c (~ 150° K), Хотя на 18.4 гПа (правильное значение для гравитации Марса) ЛЬДОВ до ~-116 ° C (~ 157° K).

Сравнение данных, собранных миссией Маринер 9 в течение весны бореальных (Ls = 43 – 54°). Показано сплошной линией на графике выше температуры (в Кельвинах) обнаружен эксперимент IRIS. Штрих пунктирные кривые показывают местные ветра (в m s-1) как вытекает из теплового баланса ветра (Поллак и. 1981). Средний график показывает температуру моделирования (K) за тот же сезон., В то время как нижней граф представляет моделирование ветров (в m s-1). Источник: «Метеорологической изменчивости и годового поверхностного давления цикла на Марсе» Фредерик Hourdin, Ле Ван Фу, Франсуа забыть, Olivier Talagrand (1993)

По данным Маринер 9 только на Южном полюсе мы находим необходимых погодных условий, Хотя согласно повреждает глобального съемщика (MGS), связанные с землей, Возможно присутствие в обоих полушариях.

Минимальные температуры в градусах Цельсия почвы Марса, взятые из тепловых спектрометр (TES) на борту Mars Global Surveyor (MGS). В горизонтальной и вертикальной Широта Долгота солнца (Ls). Синяя часть таблицы приведены минимальная температура, Среднегодовой максимум и всегда со ссылкой на ежедневных минимальных температур.

Затем, Подведение итогов, атмосфера, как представляется, достичь минимальной температуры-123 ° C нуля-132 ° C; Я отмечаю, что в-132 ° 2 не должно превышать давление 1.4 ГПа без льда!

Граф давления паров двуокиси углерода; среди других утилит этого графа, можно определить максимальное давление СО2 может достигать до конденсации (в данном случае на льду) при данной температуре.

Но вернемся к сезонной полярной депозиты; как мы уже видели, по крайней мере на ночь, на широте 60°, как кажется, существуют условия для формирования сухого льда, но то, что действительно происходит во время полярной ночи?

Давайте начнем с двух совершенно разных состояния: конденсат от поверхности для охлаждения массы воздуха или «холодные».

Для первого случая, Предположим, что температура почвы опускается ниже замораживания предел двуокиси углерода; почва начнет покрывать слоем льда все больше и больше, до здесь тепловой изоляции, вызванной льда, сам будет достаточно остановить процесс. В случае сухого льда, будучи хорошим теплоизолятором, Он просто очень мало, Поэтому само это явление не является достаточно эффективной для того, чтобы оправдать наблюдаемых ледовых накоплений! Как доказательство этого, на Северный полюс и Южный полюс принадлежит запись-132 ° C, где минимум составляет-130 ° C (По словам TES MGS). Я также интересую как надежное обнаружение-132 ° c с марсианской орбиты и спектроскопических путь, потому что при этой температуре сама почва должна быть завуалированной от процесса конденсации!

Во втором случае, Если воздушная масса (в данном случае CO 2 почти чистый) достигает точки росы, как только температура падает, его давление не превышает предел, установленный «давление пара» для этого газа при этой температуре, вызывает немедленное земли конденсации массы любой избыток газа! На самом деле, эффективность этого процесса действительно драматического; Если мы должны были имитировать аналогичное мероприятие на Марсе, Нам также нужно будет учитывать цепь событий, которые создадут.

Мы понижаем температуру Южного полюса, например до-130 ° C, начальное давление 7 гПа; давление прибытия должно быть ~ 2 ГПа, вызывая осадки снега сухого льда ~ 50 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 10 см толщиной. Конечно такой перепад давления будет оперативно воздух из прилегающих районов, с эффектом от нижней (цепочки) давление и температура из соседних районов, но конденсации вклад всех в снегу. Сам процесс также стремится сделать тепловой энергии (затем повышение температуры) в то же, Но если температура остается на уровне-130 ° C, процесс конденсации остановится только тогда, когда все планеты достигнет равновесия давление 2 гПа!

Это небольшой моделирование используется для понимания взаимосвязи между минимальных температур и изменения атмосферного давления, разъяснение почему минимальная температура и давление связаны. Из представленных графиков атмосферного давления, записаны два Викинг Ландерс мы знаем, что для викингов 1 давление изменяется от минимального 6.8 ГПа и максимум 9.0 гПа, среднее значение 7.9 . Для викингов 2 Допустимые значения – от 7.4 HPA на 10.1 ГПа в среднем 8.75 гПа. Мы также знаем, что VL 1 Он приземлился 1.5 Км и VL 2 3 Км, оба под средний уровень Марса. Учитывая, что средний уровень Марс 6.1 гПа (происходит с тройной точки воды!), Если мы масштаб значений, указанных выше среднее значение 6.1 гПа, Затем оба варьируются от менее 5.2 ± 0.05 ГПа и максимум 7 ± 0.05 гПа. Тогда как минимальное значение 5.2 ГПа, низкая температура, мы получаем ~-125 ° C (~ 148° K), уже в явные разногласия с вашими данными. Теперь, в то время как падение давления от 7 HPA на 5.2 Осаждают HPA 18,4 см толщиной (0.1 ГР/см 2) Если сжимается в 0.5 ГР/см 2 матч ~ 3.7 см толщиной, и что поверхность Южной полярной шапке ~ 1/20 Общая поверхность Марса (определенно приближаясь по умолчанию!), 3.7 см X 20 = 74 см, Это гораздо меньшее значение в пределах полярных отложений обнаружена!

Поэтому существует очевидное противоречие между тепловой данных и данных о погоде, Если один не поддерживает другие! Столь низкая температура приведет к сильным давлением колебания (даже между днем и ночью!) или даже более низкое общее давление! С другой стороны, однако 7 абсолютно недостаточно для учета такого явления, как пыль Девилс номинальное HPA, овраги, распространения света небес или величины переходных полярных месторождений, которые вы объяснили лучше намного выше атмосферного давления 7 гПа.

Пока что, были рассмотрены только аспекты, связанные с двуокиси углерода, считается одним из основных компонентов атмосферы (~ 95%); Но если мы введем даже вода в этом анализе, обозначение 7 ГПа становится совершенно нелепо!
Например, следы, оставленные поток жидкой воды (увидеть кратер Ньютон) где вода должна только быть пара государства, с учетом очень низкого давления и температуры до около 27 ° C!
В такой ситуации можно смело сказать, что давление (в наземных условиях) не может быть меньше, чем 35 гПа!